ACM-ICPC/CCPC/JSCPC板子总结(不断更新ing)

ACM-ICPC/CCPC/JSCPC板子

Team: Three alchemists(三个炼金师)
@zhoubo,18CS,Suzhou University of Science and Technology
@huangyangbang,20ICS,Suzhou University of Science and Technology
@shiweichun,20CS,Suzhou University of Science and Technology

一、数论

1.试除法判定质数
bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}
2.试除法分解质因数
void divide(int x)
{
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            int s = 0;
            while (x % i == 0) x /= i, s ++ ;
            cout << i << ' ' << s << endl;
        }
    if (x > 1) cout << x << ' ' << 1 << endl;
    cout << endl;
}
3.朴素筛法求素数
int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉
void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}
4.线性筛求素数
int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉
void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}
5.试除法求所有约数
vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}
6.约数个数和约数之和
如果 N = p1^c1 * p2^c2 * ... *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)
7.欧几里德算法
int gcd(int a, int b) {return b ? gcd(b, a % b) : a;}
8.求欧拉函数

欧 拉 函 数 公 式 : ϕ ( x ) = x ∏ i = 1 n ( 1 − 1 p i ) 欧拉函数公式:\phi(x) = x\prod_{i=1}^n(1 - \frac{1}{pi}) ϕ(x)=xi=1n(1pi1)

int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}
9.线性筛求欧拉函数
int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉
void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1; 
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}
10.快速幂
//求a^k mod p
typedef long long LL;
int qmi(int a, int k, int p)
{
    int res = 1 % p;
    while(k)
    {	
        if(k & 1) res = (LL)res * a % p;
        k >>= 1;
        a = (LL)a * a % p;
    }
    return res;
}c
11.费马小定理

如 果 p 是 一 个 质 数 , 而 整 数 a 不 是 p 的 倍 数 , 则 有 a p − 1 ≡ 1 ( m o d m ) 如果p是一个质数,而整数a不是p的倍数,则有a^{p-1}\equiv1\pmod{m} papap11(modm)

12.逆元

b ∗ x ≡ 1 ( m o d p ) b 存 在 乘 法 逆 元 的 充 要 条 件 是 b 与 模 数 p 互 质 。 当 模 数 m 为 质 数 时 , b p − 2 即 为 b 的 乘 法 逆 元 b 是 p 的 倍 数 的 时 候 , 显 然 这 个 式 子 无 解 b*x\equiv1\pmod{p}\\ b存在乘法逆元的充要条件是b与模数p互质。当模数m为质数时,b^{p- 2}即为b的乘法逆元\\ b是p的倍数的时候,显然这个式子无解 bx1(modp)bbpmbp2bbp

13.裴蜀定理

对 于 任 意 正 整 数 a , b , 一 定 存 在 非 零 整 数 x , y , 使 得 a x + b y = g c d ( a , b ) 对于任意正整数a,b,一定存在非零整数x,y,使得ax+by=gcd(a,b) a,b,x,y,使ax+by=gcd(a,b)

14.扩展欧几里德
//求x,y使得ax + by = gcd(a,b)
int exgcd(int a, int b, int &x, int &y)
{
    if(!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a / b) * x;
   return d;
}

可 用 来 求 线 性 同 余 方 程 a x ≡ b ( m o d m ) 可用来求线性同余方程ax\equiv{b}\pmod{m} 线axb(modm)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int exgcd(int a, int b, int &x, int &y) {
   if(!b) {
       x = 1, y = 0;
       return a;
   }
   int d = exgcd(b, a % b, y, x);
   y -= a / b * x;
   return d;
}
int main() {
    int n;
    scanf("%d", &n);
    while(n --) {
        int a, b, m;
        scanf("%d%d%d", &a, &b, &m);
        int x, y;
        int d = exgcd(a, m, x, y);
        if(b % d) puts("impossible");
        else printf("%d\n", (LL) x * (b / d) % m);
    }
    return 0;
}
16.高斯消元
// a[N][N]是增广矩阵
int gauss()
{
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for (int i = r; i < n; i ++ )   // 找到绝对值最大的行
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;
        if (fabs(a[t][c]) < eps) continue;
        for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]);      // 将绝对值最大的行换到最顶端
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];      // 将当前上的首位变成1
        for (int i = r + 1; i < n; i ++ )       // 用当前行将下面所有的列消成0
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j -- )
                    a[i][j] -= a[r][j] * a[i][c];
        r ++ ;
    }
    if (r < n)
    {
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][n]) > eps)
                return 2; // 无解
        return 1; // 有无穷多组解
    }
    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[i][j] * a[j][n];
    return 0; // 有唯一解
}

二、组合数学

1.递归法求组合数

n 组 询 问 , 每 组 询 问 包 括 一 组 a 和 b , 1 ≤ n ≤ 10000 , 1 ≤ b ≤ a ≤ 2000 O ( n 2 ) n组询问,每组询问包括一组a和b,1\leq{n}\leq{10000},1\leq{b}\leq{a}\leq{2000}\quad O(n^2) nab,1n10000,1ba2000O(n2)

const int mod = 1e9 + 7;
// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
    for (int j = 0; j <= i; j ++ )
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
2.通过预处理逆元的方式求组合数

n 组 询 问 , 每 组 询 问 包 括 一 组 a 和 b , 1 ≤ n ≤ 10000 , 1 ≤ b ≤ a ≤ 1 0 5 O ( n l o g n ) n组询问,每组询问包括一组a和b,1\leq{n}\leq{10000},1\leq{b}\leq{a}\leq{10^5}\quad O(nlogn) nab,1n10000,1b

  • 10
    点赞
  • 79
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ACM-ICPC(国际大学生程序设计竞赛)是一项面向大学生的计算机编程竞赛,涉及算法和数据结构等领域。在比赛中,选手需要解决一系列编程问题,使用合适的算法和数据结构来实现正确和高效的解决方案。 对于整理ACM-ICPC模板,以下是一些建议: 1. 了解比赛要求:首先,你需要了解ACM-ICPC比赛的具体要求和规则。这包括了解比赛所涉及的算法和数据结构,以及题目的类型和难度等。 2. 收集资料:收集与ACM-ICPC相关的资料,包括经典算法和数据结构的实现代码、常见问题的解题思路等。可以参考教材、博客、论文等资源。 3. 整理模板:将收集到的资料整理成模板。可以按照算法和数据结构的分类进行整理,例如排序算法、图算法、字符串算法等。对每个模板,添加必要的注释和示例代码,以便理解和使用。 4. 测试代码:对每个模板编写测试代码,确保它们的正确性和可靠性。可以使用已知的测试用例或自行设计测试用例。 5. 更新与扩充:定期更新和扩充模板,以适应ACM-ICPC比赛中新出现的算法和数据结构。同时,根据自己的经验和理解,对模板进行优化和改进。 6. 练习和复习:在比赛之前,利用整理好的模板进行练习和复习。尝试解决一些经典问题,使用模板中的算法和数据结构进行实现,并进行优化。 希望这些建议对你整理ACM-ICPC模板有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值