算法刷题总结—DFS

文章介绍了使用深度优先搜索(DFS)策略解决排列问题和N皇后问题。对于排列问题,通过DFS按字典序输出1到n的所有排列。而对于N皇后问题,提供了两种DFS解法,分别是从每个格子开始和从每一行开始遍历,确保皇后不处于同一行、列或对角线上。文章还比较了两种方法的运行效率。
摘要由CSDN通过智能技术生成

1.排列问题

问题描述

给定一个整数 n,将数字 1∼n排成一排,将会有很多种排列方法。

现在,请你按照字典序将所有的排列方法输出。

输入格式:

共一行,包含一个整数 n。

输出格式

按字典序输出所有排列方案,每个方案占一行。

数据范围

1 ≤ n ≤ 7

输入样例

3

输出样例

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 10;
int n;
int path[N];
bool state[N];

void dfs(int idx){
    if(idx > n) {
        for(int i = 1; i <= n; i ++){
            printf("%d ", path[i]);
        }
        cout << endl;
        return;
    }
    for(int i = 1; i <= n; i ++){
        if(!state[i]){
            state[i] = true;
            path[idx] = i;
            dfs(idx + 1);
            state[i] = false;
        }
    }
}

int main(){
    scanf("%d", &n);
    dfs(1);
    return 0;
}

思路

DFS问题需注意以下几点:

递归参数、终止条件以及回溯过程

①递归参数

idx为当前已经参与排列的数的个数

②终止条件

当n个数全部排列完成后,达到终止条件

③回溯过程

需要用一个状态数组记录某个数字是否被已经参与排列,回溯状态即更新该数字为未选中状态

细节部分:

需要输出每种排列情况,即当递归到最后一个数字时输出,所以采用path数组记录每个排列的结果

2. N皇后问题

问题描述

n皇后问题是指将 n个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

输入格式:

现在给定整数 n,请你输出所有的满足条件的棋子摆法。

输出格式

每个解决方案占 n 行,行输出一个长度为 n的字符串,用来表示完整的棋盘状态。

其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。

每个方案输出完成后,输出一个空行。

注意:行末不能有多余空格。

输出方案的顺序任意,只要不重复且没有遗漏即可。

数据范围

1 ≤ n ≤ 9

输入样例

4

输出样例

.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..

代码

法1: 递归遍历每个格子

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 20;
char g[N][N];
//col记录每一列的状态, a[N]记录正对角线的状态, b[N]记录反对角线的状态
bool row[N], col[N], a[N], b[N];
int n;

// (x,y)表示当前枚举的坐标, sum表示当前一共填放了多少个皇后
void dfs(int x, int y, int sum){
    if(y == n) {      //枚举完一行
        y = 0;
        x ++;
    }
    // 枚举完所有行
    if(x == n){
        if(sum == n){   //若当前已填满所有皇后, 则输出结果
            for(int i = 0; i < n; i ++){
                cout << g[i];
                cout << endl;
            }
            cout << endl;
        }
            return;
    }
    //该位置不放皇后
    dfs(x, y + 1, sum);
    //该位置放皇后
    if(!row[x] && !col[y] && !a[x + y] && !b[x - y + n]){
        g[x][y] = 'Q';
        row[x] = true, col[y] = true, a[x + y] = true, b[x - y + n] = true;
        dfs(x, y + 1, sum + 1);
        row[x] = false, col[y] = false, a[x + y] = false, b[x - y + n] = false;
        g[x][y] = '.';
    }
}

int main(){
    scanf("%d", &n);
    for(int i = 0; i < n; i ++){
        for(int j = 0; j < n; j ++){
            g[i][j] = '.';
        }
    }
    dfs(0, 0, 0);
    return 0;
}

法2:递归遍历每一行

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 20;
char g[N][N];
//col记录每一列的状态, a[N]记录正对角线的状态, b[N]记录反对角线的状态
bool col[N], a[N], b[N];
int n;

// u表示当前遍历的行
void dfs(int u){
    if(u == n){
        for(int i = 0; i < n; i ++){
            for(int j = 0; j < n; j ++){
                cout << g[i][j];
            }
            cout << endl;
        }
        cout << endl;
        return;
    }
    for(int i = 0; i < n; i ++){
        if(!col[i] && !a[u + i] && !b[i - u + n]){
            g[u][i] = 'Q';
            col[i] = true, a[u + i] = true, b[i - u + n] = true;
            dfs(u + 1);
            col[i] = false, a[u + i] = false, b[i - u + n] = false;
            g[u][i] = '.';
        }
    }
}

int main(){
    scanf("%d", &n);
    for(int i = 0; i < n; i ++){
        for(int j = 0; j < n; j ++){
            g[i][j] = '.';
        }
    }
    dfs(0);
    return 0;
}

思路

法1

考虑每个格子的填充情况,每个格子只能填或者不填,对这两种状态进行dfs

①递归参数

(x,y)表示起始递归的坐标,即从首个格子依次遍历,sum表示当前已选择的皇后的个数

②终止条件

当sum==n时,即已经选择了n个皇后,到达递归终止条件,输出当前棋盘状态即可

③回溯过程

采用row, col, a, b分别记录每一行、每一列、正对角线、反对角线的状态,若有皇后存在,则状态为true,回溯过程即首先将g[x][y]更新为 '.' ,然后对状态数组进行更新

细节:

正对角线、反对角线的表示方法,y = x + b和y = -x + b的截距分别为 y-x 和 y+x;

递归过程中,当某一行遍历完成时,遍历下一行时需要更新x和y 

法2

考虑每一行的状态,对每一行可以填充皇后的位置进行递归讨论

①递归参数

u表示当前递归到第几行

②终止条件

当遍历完最后一行时,结束递归

③回溯过程

采用col, a, b分别记录每一列、正对角线、反对角线的状态,若有皇后存在,则状态为true,回溯过程即首先将g[x][y]更新为 '.' ,然后对状态数组进行更新

以上两种方式的运行时间对比:

 可以看到,对行递归的效率要远远大于对每个格子进行递归。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值