1.排列问题
问题描述
给定一个整数 n,将数字 1∼n排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。
输入格式:
共一行,包含一个整数 n。
输出格式
按字典序输出所有排列方案,每个方案占一行。
数据范围
1 ≤ n ≤ 7
输入样例
3
输出样例
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 10;
int n;
int path[N];
bool state[N];
void dfs(int idx){
if(idx > n) {
for(int i = 1; i <= n; i ++){
printf("%d ", path[i]);
}
cout << endl;
return;
}
for(int i = 1; i <= n; i ++){
if(!state[i]){
state[i] = true;
path[idx] = i;
dfs(idx + 1);
state[i] = false;
}
}
}
int main(){
scanf("%d", &n);
dfs(1);
return 0;
}
思路
DFS问题需注意以下几点:
递归参数、终止条件以及回溯过程
①递归参数
idx为当前已经参与排列的数的个数
②终止条件
当n个数全部排列完成后,达到终止条件
③回溯过程
需要用一个状态数组记录某个数字是否被已经参与排列,回溯状态即更新该数字为未选中状态
细节部分:
需要输出每种排列情况,即当递归到最后一个数字时输出,所以采用path数组记录每个排列的结果
2. N皇后问题
问题描述
n皇后问题是指将 n个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
输入格式:
现在给定整数 n,请你输出所有的满足条件的棋子摆法。
输出格式
每个解决方案占 n 行,行输出一个长度为 n的字符串,用来表示完整的棋盘状态。
其中 .
表示某一个位置的方格状态为空,Q
表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
注意:行末不能有多余空格。
输出方案的顺序任意,只要不重复且没有遗漏即可。
数据范围
1 ≤ n ≤ 9
输入样例
4
输出样例
.Q..
...Q
Q...
..Q.
..Q.
Q...
...Q
.Q..
代码
法1: 递归遍历每个格子
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 20;
char g[N][N];
//col记录每一列的状态, a[N]记录正对角线的状态, b[N]记录反对角线的状态
bool row[N], col[N], a[N], b[N];
int n;
// (x,y)表示当前枚举的坐标, sum表示当前一共填放了多少个皇后
void dfs(int x, int y, int sum){
if(y == n) { //枚举完一行
y = 0;
x ++;
}
// 枚举完所有行
if(x == n){
if(sum == n){ //若当前已填满所有皇后, 则输出结果
for(int i = 0; i < n; i ++){
cout << g[i];
cout << endl;
}
cout << endl;
}
return;
}
//该位置不放皇后
dfs(x, y + 1, sum);
//该位置放皇后
if(!row[x] && !col[y] && !a[x + y] && !b[x - y + n]){
g[x][y] = 'Q';
row[x] = true, col[y] = true, a[x + y] = true, b[x - y + n] = true;
dfs(x, y + 1, sum + 1);
row[x] = false, col[y] = false, a[x + y] = false, b[x - y + n] = false;
g[x][y] = '.';
}
}
int main(){
scanf("%d", &n);
for(int i = 0; i < n; i ++){
for(int j = 0; j < n; j ++){
g[i][j] = '.';
}
}
dfs(0, 0, 0);
return 0;
}
法2:递归遍历每一行
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 20;
char g[N][N];
//col记录每一列的状态, a[N]记录正对角线的状态, b[N]记录反对角线的状态
bool col[N], a[N], b[N];
int n;
// u表示当前遍历的行
void dfs(int u){
if(u == n){
for(int i = 0; i < n; i ++){
for(int j = 0; j < n; j ++){
cout << g[i][j];
}
cout << endl;
}
cout << endl;
return;
}
for(int i = 0; i < n; i ++){
if(!col[i] && !a[u + i] && !b[i - u + n]){
g[u][i] = 'Q';
col[i] = true, a[u + i] = true, b[i - u + n] = true;
dfs(u + 1);
col[i] = false, a[u + i] = false, b[i - u + n] = false;
g[u][i] = '.';
}
}
}
int main(){
scanf("%d", &n);
for(int i = 0; i < n; i ++){
for(int j = 0; j < n; j ++){
g[i][j] = '.';
}
}
dfs(0);
return 0;
}
思路
法1
考虑每个格子的填充情况,每个格子只能填或者不填,对这两种状态进行dfs
①递归参数
(x,y)表示起始递归的坐标,即从首个格子依次遍历,sum表示当前已选择的皇后的个数
②终止条件
当sum==n时,即已经选择了n个皇后,到达递归终止条件,输出当前棋盘状态即可
③回溯过程
采用row, col, a, b分别记录每一行、每一列、正对角线、反对角线的状态,若有皇后存在,则状态为true,回溯过程即首先将g[x][y]更新为 '.' ,然后对状态数组进行更新
细节:
正对角线、反对角线的表示方法,y = x + b和y = -x + b的截距分别为 y-x 和 y+x;
递归过程中,当某一行遍历完成时,遍历下一行时需要更新x和y
法2
考虑每一行的状态,对每一行可以填充皇后的位置进行递归讨论
①递归参数
u表示当前递归到第几行
②终止条件
当遍历完最后一行时,结束递归
③回溯过程
采用col, a, b分别记录每一列、正对角线、反对角线的状态,若有皇后存在,则状态为true,回溯过程即首先将g[x][y]更新为 '.' ,然后对状态数组进行更新
以上两种方式的运行时间对比:
可以看到,对行递归的效率要远远大于对每个格子进行递归。