AI知识问答
文章平均质量分 71
-小透明-
记录自己的一些学习笔记。
展开
-
Principle Component Analysis
PCA有两种实现方法:输入:数据集X={x1,x2,...,xn},需降到k维(1)基于特征值分解协方差矩阵① 去中心化(去均值,即每个特征减去各自的均值)② 计算协方差矩阵1/nX*X^T(1/n不影响特征向量)③ 用特征值分解方法求解②协方差矩阵的特征值与特征向量④ 对特征值从大到小排序,选前k个。将其对应的k个特征向量分别作为行向量组成特征向量矩阵P⑤ 将数据转换到k个特征向量构建的新空间中,即Y=PX(2)基于SVD分解协方差矩阵。原创 2023-07-19 20:33:38 · 1089 阅读 · 0 评论 -
极大似然与贝叶斯
概率”:特定环境下,某件事发生的概率。基于已发生的结果推断产生这个结果的可能环境参数。连乘通过对数似然变成连加求解。原创 2023-07-16 19:11:51 · 403 阅读 · 0 评论