图文来自参考论文:《深度学习目标检测方法综述》
本次主要介绍目标检测方向的数据集,其他方向的数据集以后会更新
目标检测常用数据集有PASCAL VOC、 ImageNet、MS-COCO、Open Images、DOTA。常用数据集的样本与标注示例如下图所示:
1.PASCAL VOC
PASCAL VOC (the PASCAL visual object classifi-cation)数据集最早于2005年发布,最初只有4个类别,2005-2012年每年更新一次,主要用于图像分类、目标检测任务。目前广泛使用的是PASCAL VOC 2007和 PASCAL VOC 2012两个版本的数据集,其中, PASCAL VOC 2007包含9963张标注过的图片,标注出24640 个目标物体;PASCAL VOC 2012包含1530张图片,标注出27450个目标物体。这两个数据集都包含了 20个类别的数据,主要有人、动物、交通工具、室内 物品等,并且数据集中的图像都有对应的XML文件对目标的位置和类别进行标注。
2.ImageNet
ImageNet数据库由斯坦福大学和普林斯顿大学合作组织建立,由计算机视觉领域的专业人员维护,文档详细,应用广泛,已经成为计算机视觉领域图像算法性能检验的标准数据集。数据集包含了1400多万张图片,2万多个类别。其中使用最多的子数据集是ILSVRC (ImageNet large scale visual recognition challenge),涵盖1000个对象类别,包含1281167张训练图像,50000张验证图像和100000张测试图像。
3.MS-COCO
MS-COCO (Microsoft common objects in context) 数据集首次发布于2015年,是由微软公司开发维护的大型图像数据集,主要用于目标检测,图像分割,图像标题生成任务。一共包含了32.8万张图片,其中有超过20万张图片有详细标注,包含了91个物体类别,具有场景复杂、单张图片目标多、小目标物体多等特点,是目前图像分割领域最大的数据集。
4.Open Images
Open Images是谷歌团队发布的用于图像分类、 目标检测、视觉关系检测、图像分割和图像描述的数据集。2020年最新发布的Open Images V6包含900万张图片,600种对象,1600万个bounding-box标注,是目前最大的带图像位置标注的数据集。Open Images图像库中的bounding-box大部分都是由专业人员手工绘制的,确保了标注的准确性与一致性。图像场景复杂,通常包含多个目标(平均每张图片8.3个)。
5.DOTA
航空遥感图像不同于传统的图像数据,具有尺度变化大、目标小且密集、检测目标形态多样等特点。DOTA是航空遥感图像检测的常用数据集,包含了2806张各种尺度大小图像,图像尺寸从800x800到4000x4000不等,数据集划分为1/6验证集,1/3测试 集,1/2训练集。DOTA数据集的图像全部是由领域内人士标注的, 总计15个类别188 282个目标对象。