力扣练习题目——恰好移动 k 步到达某一位置的方法数目

恰好移动 k 步到达某一位置的方法数目

给你两个 正 整数 startPos 和 endPos 。最初,你站在 无限 数轴上位置 startPos 处。在一步移动中,你可以向左或者向右移动一个位置。

给你一个正整数 k ,返回从 startPos 出发、恰好 移动 k 步并到达 endPos 的 不同 方法数目。由于答案可能会很大,返回对 10^9 + 7 取余 的结果。

如果所执行移动的顺序不完全相同,则认为两种方法不同。

注意:数轴包含负整数。

示例 1:

输入:startPos = 1, endPos = 2, k = 3
输出:3
解释:存在 3 种从 1 到 2 且恰好移动 3 步的方法:

  • 1 -> 2 -> 3 -> 2.
  • 1 -> 2 -> 1 -> 2.
  • 1 -> 0 -> 1 -> 2.
    可以证明不存在其他方法,所以返回 3 。

示例 2:

输入:startPos = 2, endPos = 5, k = 10
输出:0
解释:不存在从 2 到 5 且恰好移动 10 步的方法。

提示:

1 <= startPos, endPos, k <= 1000

题解

一看这种规定了移动的步数就知道是用组合数了;如果是动态规划的话肯定不会给出步数。

分析题目

从题目中,我们可以发现:(以下假设m=|endPos-startPos|)
  • 当endPos>startPos时,我们有m+(k-m)/2步往右走,(k-m)/2步往左走。
  • 当endPos<startPos时,我们有m+(k-m)/2步往左走,(k-m)/2步往右走。

那么方法数就是求C(k,m+(k-m)/2))。

组合数求解新方法

以前我求组合数都是用高中的方法求的:
C ( m , n ) = C m n = m ! / ( ( m − n ) ! + n ! ) C(m,n)=C_m^n=m!/((m-n)!+n!) C(m,n)=Cmn=m!/((mn)!+n!)
而现在大多数人求组合数都是:
C ( m , n ) = C m n = C m − 1 n + C m − 1 n − 1 C(m,n)=C_m^n=C_{m-1}^n+C_{m-1}^{n-1} C(m,n)=Cmn=Cm1n+Cm1n1

代码

const int MAX=1005;
const int MOD=1e9+7;
class Solution {
    public:
    int ret;
    // C (n, m) = C (n – 1, m – 1) + C (n – 1, m)
    int comb[MAX][MAX];
    int numberOfWays(int startPos, int endPos, int k) {
        int gap=abs(endPos-startPos);
        if(gap>k||(k-gap)%2!=0){
            return 0;
        }
        int m=(k+gap)/2;
        comb[0][0]=1;
        for(int i=1;i<MAX;i++){
            comb[i][0]=comb[i][i]=1;
            for(int j=1;j<i;j++){
                comb[i][j]=(comb[i-1][j-1]+comb[i-1][j])%MOD;
            }
        }
        return comb[k][m];
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值