拍案大喊我不干
码龄4年
关注
提问 私信
  • 博客:7,326
    问答:32
    7,358
    总访问量
  • 15
    原创
  • 1,428,308
    排名
  • 3
    粉丝
  • 0
    铁粉

个人简介:所学数据科学与大数据专业,拥有丰富项目经验,擅长Web开发和人工智能,专注于自然语言处理领域,具备多项实际机器学习和大数据项目经验,熟练数据挖掘和模型优化,致力于将数据驱动转化为智能决策,偶尔发布一些个人看法及问题解决。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2021-02-08
博客简介:

qq_55254977的博客

查看详细资料
个人成就
  • 获得19次点赞
  • 内容获得9次评论
  • 获得46次收藏
  • 代码片获得112次分享
创作历程
  • 15篇
    2023年
成就勋章
兴趣领域 设置
  • Python
    pythonpandas
  • 编程语言
    pythonc语言
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Magento2各个类目里面都找不到任何商品

答:

引用chatgpt内容作答:

您描述的问题可能涉及到Magento 2的缓存、索引以及可能的其他配置问题。在Magento 2中,商品和类目的显示通常受到缓存和索引的影响。以下是一些您可以尝试的解决方法:

刷新缓存和索引: 首先,您可以尝试在Magento 2后台刷新缓存和索引。在System > Cache Management中,您可以选择清除缓存并刷新所有索引。这将重新生成缓存和索引,有时能够解决前台类目显示不正确的问题。

定时任务(Cron): Magento 2依赖定时任务来执行一些后台操作,如索引更新。确保您的Cron定时任务设置正确,并且定时运行。您可以在Magento 2的后台设置中配置Cron。

缓存类型: Magento 2拥有多种缓存类型,包括页面缓存、块缓存等。尝试清除这些缓存,并在前台查看是否有所改善。

缓存策略: 检查Magento 2的缓存策略设置,确保您的缓存配置适合您的使用情况。有时,某些缓存配置可能会导致数据在前台不正确显示。

错误日志: 查看Magento 2的错误日志,看是否有任何相关的错误信息,这可能会帮助您找到问题的根本原因。

第三方模块和主题: 如果您使用了第三方的模块或主题,这些可能会影响到商品和类目的显示。尝试禁用这些第三方扩展,看看问题是否得以解决。

Magento版本和补丁: 确保您的Magento 2版本是最新的,并且已经应用了所有推荐的安全补丁和更新。

服务器缓存: 如果您在服务器上使用了缓存,如Varnish等,确保这些缓存配置正确,以避免影响前台显示。

如果您尝试了上述方法仍然没有解决问题,可能需要更详细地检查Magento 2的错误日志以及数据库操作日志,以查找更深层次的问题。如果问题仍然无法解决,可能需要考虑向Magento官方社区或专业开发人员寻求帮助,以获取更详细和定制化的解决方案。

回答问题 2023.08.21

vue3 自定义指令 数据更新两次但是 指令只更新一次

答:

Day.js 引入问题:你使用dayjs来格式化日期,但是脚本的顶部只引入了dayjs.min.js,并且没有引入dayjs的Vue插件。这可能导致dayjs在自定义指令中无法正常工作

回答问题 2023.08.21

关于⟪C Primer Plus⟫中程序清单中与IDE的学习疑问

答:

scanf_s("%s", name);问题是在这一行,首先,scanf_s()函数是无法读取空格所以后面的 Chance 读取不到,其次scanf_s()函数,参数后面需加一个参数大小值。
这句修改为:scanf_s("%[^\n]", name, 40);就没问题了。

回答问题 2023.08.21

安卓手机refresh token已失效

答:

只能用土方法了,把所有软件的联网都关了,然后一个一个开启运行联网试试

回答问题 2023.08.21

C#百度AI语音识别

答:

参数字段不对,报错的原因应该是这个

回答问题 2023.08.21

最大期望算法(EM)法的原理及应用场景

最大期望算法(Expectation-Maximization Algorithm,EM算法)在许多统计和机器学习任务中都有广泛的应用。
原创
发布博客 2023.08.21 ·
1087 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

Airsim运行openvins的问题

答:

这个报错问题可能很多方面导致的,首先,确保您的配置文件中的所有参数格式和值都正确。可能有某些参数不符合预期,导致参数解析失败。检查每个参数,并与文档中的示例进行对比。还有就是你的报错信息中显示了关于互斥锁操作失败的问题。这可能是由于线程同步问题引起的。确保代码中使用互斥锁的地方是正确的,并且没有死锁等问题。然后你再看看在运行命令中配置了不同的图像和IMU话题。确保这些话题在AirSim中存在,并且命名正确。如果话题名称不正确,将导致订阅失败。

回答问题 2023.08.19

PHPWord修改模板部分变量不能显示

答:

模板中的占位符是以大写形式表示的:$AIRLINEPNR 和 $IEPNR。你的代码中,你使用的是小写形式的占位符:$airlinePnr 和 $iePnr。

回答问题 2023.08.19

安卓13系统流量记录数据清除的方法

答:

进入设置,按小米而言就是在“连接与共享”那边,别的手机可能看看比如什么“网络与互联网”,或是“连接”。进入之后有一个流量使用情况,然后下面有清楚,清楚全部数据

回答问题 2023.08.19

核主成分分析法原理及基于某段股票周期性波动的市场分析实战

核主成分分析(Kernel Principal Component Analysis,Kernel PCA)是主成分分析(PCA)的一种扩展形式,用于处理非线性数据。传统的PCA适用于线性数据,但在许多情况下,数据可能存在复杂的非线性关系。Kernel PCA通过使用核技巧,将数据映射到一个高维的特征空间,从而在新的特征空间中执行PCA。
原创
发布博客 2023.08.18 ·
391 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

eclat算法原理及基于网站用户异常分析的实战

Eclat(Eclat stands for "Equivalence Class Clustering and bottom-up Lattice Traversal") 是一种用于频繁项集挖掘的数据挖掘算法,用于从交易数据或事务数据库中发现频繁项集。频繁项集是指在数据集中频繁出现的物品的组合。Eclat算法通过使用垂直数据表示和基于逐层遍历的方法来实现频繁项集的挖掘。
原创
发布博客 2023.08.17 ·
426 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

PCA基本原理及基于机器学习时数据预处理的实战

主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维技术,用于在保留数据中最大可解释方差的前提下,将原始数据投影到一个新的坐标系中。这些新的坐标轴被称为主成分,它们是原始特征的线性组合。PCA的主要目标是减少数据的维度,同时保留尽可能多的信息。
原创
发布博客 2023.08.16 ·
483 阅读 ·
2 点赞 ·
1 评论 ·
4 收藏

分割结果dice系数过高,较为离谱

答:

你的训练数据正负样本数量是平衡的吗,正或负数量过多就会导致预测结果倾斜。还有就是训练数据中有没有与测试数据吻合度较高的数据集,要确保训练集和测试集尽可能独立不重合。就是我也不太懂你这个数据是啥样的,模型复杂度不匹配也可能会导致过拟合。导致的方法有很多,你参考一下看看是什么问题。

回答问题 2023.08.15

java海康开发获取客流量存入数据库

答:

首先是思路方面:

  1. 数据获取和分析:
    使用海康提供的 clientdemo 或者其他适用的工具,确保你能够连接到摄像头并获取摄像头视频流和相关数据。
    客流数据可能包括人数统计、区域密度等信息。要获取这些数据,你可能需要查阅海康的开发文档,了解如何从视频流中提取这些信息,或者是否有其他API可以直接获取这些数据。
  2. 数据存储:
    选择一个适用的数据库来存储客流数据。常见的选择包括 MySQL、PostgreSQL、MongoDB 等。根据数据的结构,设计数据库表格以存储摄像头的客流数据。
  3. 后端开发:
    创建一个后端服务(比如使用 Python + Flask 或者 Node.js + Express),这个后端服务负责:
    从摄像头数据中提取客流数据。
    将提取的客流数据保存到数据库中。
  4. 前端开发:
    创建一个前端应用,用于实时请求和展示客流数据。
    使用前端框架(如React、Vue等),通过 AJAX 或者 WebSocket 与后端进行通信,实时获取客流数据。
    将客流数据以图表、数字等方式展示在前端页面上。
  5. 定时任务和实时性:
    如果需要实时更新客流数据,你可以在后端设置一个定时任务,定时从摄像头中获取最新数据,并更新数据库。
    在前端,你可以使用定时器(如setInterval函数)来定期请求最新的客流数据,以实时展示。
  6. 安全和权限:
    考虑安全性问题,确保后端接口有适当的认证和权限控制,以及前端界面的访问控制,防止未授权访问和数据泄漏。
    以上是一个大致的指导,但要根据你的实际情况和技术栈进行适当的调整。海康的开发文档和支持团队也会是你实现的重要资源,可以帮助你更深入地了解如何从摄像头获取数据以及如何与其集成。

先说一下那个摄像机里面的客流数据(怎么获取,只要里面的数据)这个问题。

  1. 登录到摄像头:
    首先,你需要使用海康提供的开发工具或API来连接到摄像头。这通常涉及到通过网络访问摄像头,并提供适当的身份验证凭据。
  2. 获取客流数据:
    一旦连接到摄像头,你可以使用API来获取客流数据。海康的开发文档通常会提供这些API的详细信息。客流数据可能以一组数字或结构化数据的形式返回,包括人数、区域密度等信息。
  3. 解析和处理数据:
    从API获取的数据可能是原始的JSON、XML等格式。你需要解析这些数据,提取出你所需要的客流数据。这通常涉及到对JSON或XML进行处理的编程操作。
import requests

# 摄像头的地址和API路径
camera_url = "http://your_camera_ip/api"
api_path = "/get_visitor_data"

# 发送GET请求获取客流数据
response = requests.get(camera_url + api_path)

# 解析JSON数据
data = response.json()

# 提取客流数据
visitor_count = data["visitor_count"]

print("Current visitor count:", visitor_count)

根据海康提供的API文档和你的摄像头型号进行适当的修改。你可能还需要处理身份验证、错误处理和数据转换等问题。

然后再说一下这个前端需要实时请求这个摄像机里面的数据,来拿到当前景区的人数。
后端:


from flask import Flask, jsonify

app = Flask(__name__)

# 模拟从摄像头获取的客流数据
def get_visitor_count():
    # 在实际应用中,这里可以是从摄像头获取的实时数据
    return 100  # 假设当前人数为100

@app.route('/get_visitor_data', methods=['GET'])
def get_visitor_data():
    visitor_count = get_visitor_count()
    data = {
        'visitor_count': visitor_count
    }
    return jsonify(data)

if __name__ == '__main__':
    app.run(debug=True)

前端:


<!DOCTYPE html>
<html>
<head>
    <title>Visitor Count</title>
</head>
<body>
    <h1>Current Visitor Count: <span id="visitorCount">Loading...</span></h1>
    <script>
        function updateVisitorCount() {
            fetch('/get_visitor_data')
                .then(response => response.json())
                .then(data => {
                    document.getElementById('visitorCount').textContent = data.visitor_count;
                });
        }

        // 更新数据的间隔时间(毫秒)
        const updateInterval = 5000; // 每5秒更新一次

        // 初始化时立即更新一次数据
        updateVisitorCount();

        // 定时更新数据
        setInterval(updateVisitorCount, updateInterval);
    </script>
</body>
</html>
回答问题 2023.08.15

microsoft store 安装报错“无法安装此应用程序 请检查microsoft store更新 然后重试”

答:

你可以试一下这几种看看是哪个问题导致的。
1、检查网络连接: 确保你的设备连接到稳定的互联网网络。时不时网络不稳定可能导致安装失败。
2、检查Microsoft Store更新: 检查你的 Microsoft Store 应用是否需要更新。前往 Microsoft Store,点击右上角的“...”按钮,然后选择“下载和更新”。确保你的 Microsoft Store 是最新版本。
3、重启设备: 尝试重启你的设备。有时候重新启动可以解决一些应用商店的问题。
4、清除Microsoft Store缓存: 有时候 Microsoft Store 缓存的问题可能导致安装失败。前往 Windows 设置 -> 应用 -> 应用和功能,找到 Microsoft Store 并点击“高级选项”。在弹出的窗口中,尝试点击“重置”来清除缓存。
5、检查时间和日期设置: 确保你的设备的时间和日期设置是正确的。不正确的时间和日期可能导致与服务器通信出现问题。
6、尝试使用其他用户账户: 有时候用户账户可能会受到某些设置的影响,尝试切换到其他用户账户进行安装。
7、检查防火墙和安全软件: 确保你的防火墙和安全软件没有阻止 Microsoft Store 的访问。有时候安全软件可能会干扰应用商店的连接。
8、操作系统更新: 确保你的操作系统是最新版本。一些安装问题可能会在操作系统更新后得到解决。
9、重置Microsoft Store: 如果上述方法都没有解决问题,你可以尝试重置 Microsoft Store 应用。打开“设置” -> “应用” -> “应用和功能”,找到 Microsoft Store 并点击“高级选项”,然后选择“重置”。

回答问题 2023.08.15

密度的聚类方法(DBSCAN)原理及基于癌症病理分析的应用实战

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,它可以识别数据集中的高密度区域,并将其视为一个簇,同时可以识别低密度区域作为噪声点。
原创
发布博客 2023.08.15 ·
408 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

梯度下降法原理及基于图像处理的实战

梯度下降法是一种常用于优化机器学习模型的迭代优化算法,其核心原理是通过反复调整模型参数以最小化损失函数。这种方法特别适用于求解复杂的非线性问题,例如训练神经网络等。
原创
发布博客 2023.08.14 ·
749 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

神经网络原理及基于电影评价情感分析的实战

神经网络是一种受到人类神经系统启发的机器学习算法,用于模拟和解决各种复杂的问题,例如图像识别、自然语言处理、语音识别等。神经网络的原理基于一系列相互连接的神经元,通过学习和调整连接权重来执行任务。神经网络的基本单元是神经元,也被称为节点或单元。每个神经元接收多个输入,执行一些计算,并产生一个输出。输入通过加权连接传递给神经元,然后通过激活函数进行处理。每个输入连接都有一个关联的权重,表示了输入对神经元的影响程度。权重越大,表示输入对神经元的影响越显著。训练过程中,神经网络通过调整这些权重来学习任务。
原创
发布博客 2023.08.12 ·
345 阅读 ·
1 点赞 ·
1 评论 ·
7 收藏

(支持向量机)SVM算法原理及基于癌症类型识别的实战

支持向量机(Support Vector Machine,SVM)是一种在机器学习中广泛应用的监督学习算法,用于分类和回归问题。其基本原理是在特征空间中寻找一个超平面,以最大化不同类别之间的间隔,并将数据点分隔开。
原创
发布博客 2023.08.11 ·
350 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

随机森林算法原理及基于银行信贷风险评估的实战

随机森林(Random Forest)是一种集成学习(Ensemble Learning)算法,通过将多个决策树集成在一起,以提高整体模型的性能和泛化能力。随机森林适用于分类和回归问题,并且在处理高维数据、大量样本和特征选择等方面表现出色。
原创
发布博客 2023.08.10 ·
972 阅读 ·
2 点赞 ·
1 评论 ·
5 收藏
加载更多