最大期望算法(EM)法的原理及应用场景

最大期望算法(EM)包括E步和M步,用于计算隐含变量的后验概率和最大化似然函数。常见应用场景有混合高斯模型、隐马尔可夫模型、图像分割、基因表达数据分析和密度估计等。
摘要由CSDN通过智能技术生成

算法原理:

        最大期望算法(Expectation-Maximization Algorithm,EM算法)涉及两个主要步骤:E步(Expectation Step)和M步(Maximization Step)。这两个步骤的具体数学函数解释如下:

  1. E步(Expectation Step): 在E步中,需要计算隐含变量的后验概率,即在给定观测数据和当前参数下,每个隐含变量的可能取值。这一步的目标是计算期望值,因此称为"期望步骤"。数学上,对于每个隐含变量,计算其条件概率分布,表示为 P(隐含变量|观测数据, 参数)。

  2. M步(Maximization Step): 在M步中,固定隐含变量的后验概率,然后最大化似然函数关于模型参数的期望。这一步涉及数学优化,即找到能够使得给定数据的观测概率最大化的参数值。因此称为"最大化步骤"。数学上,对于每个参数,找到使得似然函数最大化的参数值。

具体来说,假设有观测数据集 X 和隐含变量集 Z,要估计的参数为 θ。EM算法的迭代过程如下:

  1. E步(Expectation Step): 计算在当前参数 θ 下,每个隐含变量 Z 的后验概率分布 P(Z|X, θ)。这可以使用贝叶斯定理得到,即 P(Z|X, θ) = P(X|Z, θ) * P(Z|θ) / P(X|θ)。 其中,P(X|Z, θ) 是给定隐含变量的

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值