XTU 1378 Blocks

本文探讨了一道经典的算法题目,即如何用n块积木按照特定规则排列成m列的不同方案数量。通过动态规划的方法给出了详细的解题思路及AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给你一个n块积木,每个积木块都是立方体,现在把它们排列一排,成m列,要求每列上至少有1个积木,且从左到右,每列的积木数量呈严格单调下降。比如8块积木,排成3列,那么合法的安排方案为521或者431。请问n块积木按规则排成m有多少种不同的方案?

输入

第一行是一个整数T(1≤T≤1000),表示样例的个数。

以后每个样例占一行,为两个整数 n(1≤n≤100),m(1≤m≤10)。

输出

依次每行输出一个样例的结果,为一个整数。

样例输入

2
8 3
13 4

样例输出

2
3

样例解释

第二个样例的合法方案为7321,6421,5431。

思路:我认为这是一个动态规划问题,设dp[i][j][k]表示的意义为i块积木按规则排成j列的第一列个数为k的方案,因此所求即为dp[n][m][1]+dp[n][m][2].......+dp[n][m][n],动态规划方程为;dp[i][j][k]=dp[i-k][j-1][0]..........+dp[i-k][j-1][k-1](这里k明显是能优化的,但是我没有,毕竟这样好理解,因为题目要单调递减,把小于k的全加起来就行了,但是有可能k有时候会比i-k要大,所以第k数组要开得跟i差不多大)。

AC代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
    int k;
    scanf("%d",&k);
    while(k--)
    {
        int dp[110][20][200];
        memset(dp,0,sizeof(dp));
        dp[1][1][1]=1;
        int i,j,k,q,n,m,count=0;
        scanf("%d%d",&n,&m);
        for(i=2;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                for(k=1;k<=i;k++)
                {
                    if(i==k&&j==1)//如果排成一列,那么开头必然就是总的个数,此时只有一种。
                    {
                        dp[i][j][k]=1;
                    }
                    else
                    {
                        for(q=k-1;q>=1;q--)
                        {
                            dp[i][j][k]+=dp[i-k][j-1][q];
                        }
                    }
                }
            }
        }
        for(i=1;i<=n;i++)
        {
            count+=dp[n][m][i];
        }
        printf("%d\n",count);
    }
    return 0;
}

代码可以优化一下,但是作者懒........(爬)......

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值