1252. 奇数值单元格的数目
题目
给你一个 m x n 的矩阵,最开始的时候,每个单元格中的值都是 0。
另有一个二维索引数组 indices,indices[i] = [ri, ci] 指向矩阵中的某个位置,其中 ri 和 ci 分别表示指定的行和列(从 0 开始编号)。
对 indices[i] 所指向的每个位置,应同时执行下述增量操作:
ri 行上的所有单元格,加 1 。
ci 列上的所有单元格,加 1 。
给你 m、n 和 indices 。请你在执行完所有 indices 指定的增量操作后,返回矩阵中 奇数值单元格 的数目。
示例 1:
输入:m = 2, n = 3, indices = [[0,1],[1,1]]
输出:6
解释:最开始的矩阵是 [[0,0,0],[0,0,0]]。
第一次增量操作后得到 [[1,2,1],[0,1,0]]。
最后的矩阵是 [[1,3,1],[1,3,1]],里面有 6 个奇数。示例 2:
输入:m = 2, n = 2, indices = [[1,1],[0,0]]
输出:0
解释:最后的矩阵是 [[2,2],[2,2]],里面没有奇数。
提示:
1 <= m, n <= 50
1 <= indices.length <= 100
0 <= ri < m
0 <= ci < n
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/cells-with-odd-values-in-a-matrix
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
代码
class Solution {
public int oddCells(int m, int n, int[][] indices) {
int [] r=new int [m];
int [] c=new int [n];
for(int i=0;i<indices.length;i++){
r[indices[i][0]]++;
c[indices[i][1]]++;
}
int sumR=0;
for(int a:r){
sumR+=(a & 1)==1?1:0; //位运算,如果a的值是一,那么sumR的值就加一
}
int sumC=0;
for(int a:c){
sumC+=(a & 1)==1?1:0; //同理
}
return sumR*(n-sumC)+sumC*(m-sumR);
}
}
题解
思路
每一次进行增量操作时,给出的元素所在的行、列的所有值都要加一,而当前元素要进行加一操作两次对奇数值单元格的数量无影响,就不管。我们可以将要进行加一操作的行、列存储起来。在进行处理。
int [] r=new int [m]; //存储第i行要进行加一的次数
int [] c=new int [n]; //存储第i列要进行加一的次数
for(int i=0;i<indices.length;i++){
r[indices[i][0]]++;
c[indices[i][1]]++;
}
//预处理,将每一行、列要加一的次数存储
得到了每一行、列要加一的次数
分开计算奇数值单元格的数目。分成两部分来计算
一部分是以行为基准,我们可以得到行加奇数值的个数。我们将列加奇数值的个数除去。两者相乘。 即 *sumR(n-sumC)**可以得到行奇数值单元格的数目。
同理可得:sumC(m-sumR)*
奇数值单元格的数量:sumR*(n-sumC)+sumC*(m-sumR)
复杂度
时间复杂度:O(n + m + indices.length)
空间复杂度:O(m + n )