朴素贝叶斯

本文介绍了条件概率的概念,通过文氏图解释了条件概率的计算方式,并阐述了全概率公式。接着讲解了贝叶斯推断,包括先验概率、后验概率和可能性函数的概念,以及如何利用贝叶斯公式进行决策。以一个求婚案例展示了如何运用贝叶斯公式计算不同决策的概率,帮助决策者做出选择。
摘要由CSDN通过智能技术生成

1. 条件概率公式

条件概率(Condittional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示
在这里插入图片描述
根据文氏图可知:在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) = > P ( A ∩ B ) = P ( A ∣ B ) P ( B ) P(A|B)=\frac{P(A \cap B)}{P(B)} =>P(A \cap B)=P(A|B)P(B) P(AB)=P(B)P(AB)=>P(AB)=P(AB)P(B)

同理可得: P ( A ∩ B ) = P ( B ∣ A ) P ( A ) P(A\cap B)=\frac{P(B|A)}{P(A)} P(AB)=P(A)P(BA)

所以: P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A){P(A)}}{P(B)} P(AB)=P(B)P(BA)P(A)

接着看全概率公式,如果事件 A 1 , A 2 , A 3 , . . . , A n A_1,A_2,A_3,...,A_n A1,A2,A3,...,An构成一个完备事件且都有正概率,那么对于任意一个事件B则有:
P ( B ) = P ( B A 1 ) + P ( B A 2 ) + P ( B A 3 ) + ⋯ + P ( B A n )     = P ( B ∣ A 1 ) P ( A 1 ) + P ( B ∣ A 2 ) P ( A 2 ) + ⋯ + P ( B ∣ A n ) P ( A n ) = > P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = P(BA_1)+P(BA_2)+P(BA_3)+ \cdots +P(BA_n) \\ \qquad \qquad \qquad \ \ \ = P(B|A_1)P(A_1)+P(B|A_2)P(A_2)+ \cdots +P(B|A_n)P(A_n) \\ =>P(B)=\sum_{i=1}^{n}P(A_i)P(B|A_i) P(B)=P(BA1)+P(BA2)+P(BA3)++P(BAn)   =P(BA1)P(A1)+P(BA2)P(A2)++P(BAn)P(An)=>P(B)=i=1nP(Ai)P(BAi)

2. 贝叶斯推断

根据条件概率和全概率公式,可以得到贝叶斯公式如下:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(A|B)=P(A)\frac{P(B|A)}{P(B)} \qquad \qquad P(A_i|B)=P(A_i) \frac{P(B|A_i)} {\sum_{i=1}^{n}P(A_i)P(B|A_i)} P(AB)=P(A)P(B)P(BA)P(AiB)=P(Ai)i=1nP(Ai)P(BAi)P(BAi)

P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。
P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。
P(B|A)/P(B)称为"可能性函数"(Likely hood),这是一个调整因子,使得预估概率更接近真实概率。

所以条件概率可以理解为:后验概率 = 先验概率 * 调整因子
如果"可能性函数">1,意味着"先验概率"被增强,事件A的发生的可能性变大;
如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;
如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。

3. 案例

颜值性格上进嫁or不嫁
上进
不帅一般不嫁
不帅不好不上进不嫁
一般
不帅上进
不好一般不嫁
不上进
不帅不好上进不嫁
不好上进
不帅不上进不嫁

假如某男(帅,性格不好,不上进)向女生求婚,该女生嫁还是不嫁?

根据贝叶斯公式: P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)=P(A)\frac{P(B|A)}{P(B)} P(AB)=P(A)P(B)P(BA)

转换成分类任务的表达式: P ( 类 别 ∣ 特 征 ) = P ( 类 别 ) P ( 特 征 ∣ 类 别 ) P ( 特 征 ) P(类别|特征)=P(类别)\frac{P(特征|类别)}{P(特征)} P()=P()P()P()

我们这个例子,按照朴素贝叶斯的求解,可以转换为计算 P ( 嫁 ∣ 帅 , 性 格 不 好 , 不 上 进 )   和   P ( 不 嫁 ∣ 帅 , 性 格 不 好 , 不 上 进 ) P(嫁|帅,性格不好,不上进)\ 和 \ P(不嫁|帅,性格不好,不上进) P(,,)  P(,,) ,最终选择嫁与不嫁的答案。
根据贝叶斯公式可知:
P ( C ∣ F 1 , F 2 , … ) = P ( C ) P ( F 1 , F 2 , … ∣ C ) P ( F 1 , F 2 , … ) P(C|F1,F2,\ldots)={P(C)}\frac{P(F1,F2,\ldots|C)}{P(F1,F2,\ldots)} P(CF1,F2,)=P(C)P(F1,F2,)P(F1,F2,C)

P ( 嫁 ∣ 帅 , 性 格 不 好 , 不 上 进 ) = P ( 嫁 ) P ( 帅 ∣ 嫁 ) P ( 性 格 不 好 ∣ 嫁 ) P ( 不 上 进 ∣ 嫁 ) P ( 帅 , 性 格 不 好 , 不 上 进 ) P(嫁|帅,性格不好,不上进)=P(嫁)\frac{P(帅|嫁)P(性格不好|嫁)P(不上进|嫁)}{P(帅,性格不好,不上进)} P(,,)=P()P(,,)P()P()P()

P ( 不 嫁 ∣ 帅 , 性 格 不 好 , 不 上 进 ) = P ( 不 嫁 ) P ( 帅 ∣ 不 嫁 ) P ( 性 格 不 好 ∣ 不 嫁 ) P ( 不 上 进 ∣ 不 嫁 ) P ( 帅 , 性 格 不 好 , 不 上 进 ) P(不嫁|帅,性格不好,不上进)=P(不嫁)\frac{P(帅|不嫁)P(性格不好|不嫁)P(不上进|不嫁)}{P(帅,性格不好,不上进)} P(,,)=P()P(,,)P()P()P()

分母的计算用到的是全概率公式:
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B)=\sum_{i=1}^{n}P(A_i)P(B|A_i) P(B)=i=1nP(Ai)P(BAi)

所以:
P ( 帅 , 性 格 不 好 , 不 上 进 ) = P ( 嫁 ) P ( 帅 ∣ 嫁 ) P ( 性 格 不 好 ∣ 嫁 ) P ( 不 上 进 ∣ 嫁 ) + P ( 不 嫁 ) P ( 帅 ∣ 不 嫁 ) P ( 性 格 不 好 ∣ 不 嫁 ) P ( 不 上 进 ∣ 不 嫁 ) P(帅,性格不好,不上进)=P(嫁)P(帅|嫁)P(性格不好|嫁)P(不上进|嫁)+P(不嫁)P(帅|不嫁)P(性格不好|不嫁)P(不上进|不嫁) P(,,)=P()P()P()P()+P()P()P()P()

由上表可以得出:

  • P(嫁)= 5/10 = 1/2

  • P(不嫁)= 5/10 = 1/2

  • P(帅|嫁) * P(性格不好|嫁) * P(不上进|嫁)= 4/5 * 1/5 * 1/5

  • P(帅|不嫁) * P(性格不好|不嫁) * P(不上进|不嫁) = 1/5 * 3/5 * 2/5

  • P(嫁) * P(帅|嫁) * P(性格不好|嫁) * P(不上进|嫁) = 1/2 * 4/5 * 1/5 * 1/5 = 2/125

  • P(不嫁) * P(帅|不嫁) * P(性格不好|不嫁) * P(不上进|不嫁) = 1/2 * 1/5 * 3/5 * 2/5 = 3/125

所以最终结果为:

  • P(嫁|帅\ 性格不好\ 不上进) = (2/125) / (2/125 + 3/125) = 40%
  • P(不嫁|帅\ 性格不好\ 不上进) = (3/125) / (2/125 + 3/125) = 60%

60% > 40%,该女生选择不嫁。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值