大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。
本文主要介绍了Python数据可视化:科技图表绘制,希望能对学习Python的同学们有所帮助。
1. 前言
数据可视化是数据科学和数据分析的重要组成部分,它允许我们将复杂的数据变得更加容易理解和有意义。本书的目标是帮助读者掌握数据可视化的艺术,并深入了解如何利用Python及其强大的Matplotlib库等工具创建引人入胜的图形和可视化。
Python是一种强大的开源数据分析和建模工具,备受数据科学家、研究人员和业界专业人士的喜爱。它的灵活性、扩展性和丰富的数据处理能力使其成为数据可视化的理想平台。
在Python中,Matplotlib是最受欢迎的数据可视化库之一,它提供了丰富的绘图功能和灵活的接口。通过Matplotlib,用户可以创建各种类型的图表,从简单的线图到复杂的三维图形,满足不同需求的可视化任务。
2. 书籍推荐
因此,像《Python数据可视化:科技图表绘制》这样一本全面且系统地介绍是非常必要的。
本书提供了大量绘图示例,这些示例为读者提供了绘图思路,并展示了Python及相关绘图库的强大功能,读者可以在此基础上进一步美化练习操作。本书内容可以起到抛砖引玉的作用,各绘图包的详细功能读者可以参考对应的说明文件深入学习。
本书编写过程中重点参考了Python可视化库的系列帮助文档,大部分数据采用公开数据集。希望通过大量的实战对读者有所启发。
2.1 内容简介
《Python数据可视化:科技图表绘制》结合编者多年的数据分析与科研绘图经验,详细讲解Python语言及包括Matplotlib在内的多种可视化包在数据分析与科研图表制作中的使用方法与技巧。《Python数据可视化:科技图表绘制》分为两部分,共11章,第1部分主要讲解Python语言的基础知识,包括基本语法结构、控制语句、函数、数据处理与清洗等,尤其对Matplotlib、Seaborn、Plotnie库进行较为详细的讲解。第2部分结合Python及其附加包的数据可视化功能,分别讲解类别比较数据、数值关系数据、层次关系数据、局部整体型数据、分布式数据、时间序列数据、多维数据、网络关系数据的可视化实现方法。《Python数据可视化:科技图表绘制》可帮助读者尽快掌握利用Python及可视化库进行科技图表的制作与数据展示。
《Python数据可视化:科技图表绘制》注重基础,内容翔实,突出示例讲解,既适合广大科研工作者、工程师和在校学生等不同层次的读者自学使用,也可以作为大中专院校相关专业的教学参考书。
2.2 本书作者
- 芯智:毕业于北京航空航天大学,现就职于中国科学院,从事科研工作近二十年。目前参与国家科技重大专项攻关任务,熟练掌握各种工程应用与数据分析软件,曾获得国家专利奖、北京市专利奖和中科院成果转化特等奖等荣誉。
2.3 本书目录
目 录
第1章 Python基础知识1
1.1 Python语言概述1
1.1.1 Python的诞生1
1.1.2 Python的特点2
1.1.3 Python绘图系统3
1.2 Python的获取与安装4
1.2.1 安装程序下载4
1.2.2 安装与启动5
1.2.3 辅助开发工具7
1.2.4 包的安装与加载11
1.3 Python的基础语法13
1.3.1 标识符13
1.3.2 注释14
1.3.3 续行14
1.3.4 输入/输出函数15
1.3.5 运算符16
1.3.6 数据结构17
1.3.7 序列20
1.4 程序控制语句21
1.4.1 条件语句22
1.4.2 for循环语句23
1.4.3 while循环语句24
1.4.4 其他语句26
1.5 函数28
1.5.1 定义函数28
1.5.2 调用函数30
1.5.3 匿名函数(Lambda函数)31
1.6 本章小结32
第2章 数据处理与清洗33
2.1 NumPy:数值计算33
2.1.1 数组的创建33
2.1.2 数组的索引与切片35
2.1.3 数组的变换36
2.1.4 基本运算37
2.2 Pandas:数据处理38
2.2.1 数据结构38
2.2.2 数据类型41
2.2.3 数据的导入与导出44
2.2.4 合并数据46
2.2.5 数据选择47
2.2.6 数据过滤47
2.2.7 数据排序48
2.2.8 数据合并48
2.2.9 数据重塑49
2.2.10 缺失值处理50
2.2.11 重复值处理51
2.3 本章小结51
第3章 Python绘图系统52
3.1 Matplotlib 52
3.1.1 图表对象53
3.1.2 创建图形57
3.1.3 添加子图与布局59
3.1.4 图表元素函数67
3.1.5 绘图函数69
3.1.6 坐标系70
3.1.7 图表风格71
3.2 Seaborn74
3.2.1 绘图函数74
3.2.2 绘图风格77
3.2.3 颜色主题78
3.2.4 图表分面79
3.3 Plotnine80
3.3.1 语法框架81
3.3.2 底层函数83
3.3.3 绘图函数83
3.3.4 图表主题87
3.3.5 图表分面89
3.4 本章小结91
第4章 类别比较数据可视化92
4.1 柱状图92
4.2 条形图101
4.3 棒棒糖图106
4.4 包点图117
4.5 雷达图120
4.6 径向柱状图124
4.7 词云图132
4.8 玫瑰图136
4.9 本章小结140
第5章 数值关系数据可视化141
5.1 散点图141
5.2 边际图149
5.3 曼哈顿图156
5.4 气泡图160
5.5 等高线图165
5.6 三元相图172
5.7 瀑布图174
5.8 生存曲线图177
5.9 火山图179
5.10 本章小结182
第6章 层次关系数据可视化183
6.1 旭日图183
6.2 树状图191
6.3 桑基图196
6.4 矩形树状图198
6.5 圆堆积图202
6.6 本章小结204
第7章 局部整体型数据可视化205
7.1 饼图205
7.2 嵌套饼图211
7.3 华夫图212
7.4 马赛克图217
7.5 本章小结220
第8章 分布式数据可视化221
8.1 直方图221
8.2 核密度图229
8.3 箱线图234
8.4 小提琴图242
8.5 金字塔图250
8.6 脊线图253
8.7 累积分布曲线图258
8.8 本章小结260
第9章 时间序列数据可视化261
9.1 折线图261
9.2 K线图272
9.3 子弹图274
9.4 仪表图278
9.5 面积图280
9.6 日历图286
9.7 本章小结287
第10章 多维数据可视化288
10.1 热图288
10.2 矩阵散点图296
10.3 平行坐标图300
10.4 安德鲁斯曲线305
10.5 本章小结306
第11章 网络关系数据可视化307
11.1 节点链接图307
11.2 弧线图311
11.3 蜂巢图313
11.4 和弦图315
11.5 切尔科斯图319
11.6 本章小结322
参考文献323
本书特色
2.4 本书读者
《Python数据可视化:科技图表绘制》注重基础,内容翔实,突出示例讲解,既适合广大科研工作者、工程师和在校学生等不同层次的读者自学使用,也可以作为大中专院校相关专业的教学参考书。
3. 购买链接
本书的京东购买链接为:Python数据可视化:科技图表绘制。