二进制的运算

位与(&)

类似于逻辑与运行,当条件都为true时,结果才为true。

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

在这里插入图片描述

位或(|)

类似于逻辑或运行,当条件只要有一个为true时,结果就为true。

0 | 0 = 0
0 | 1 = 1
1 | 0 = 1
1 | 1 = 1

在这里插入图片描述

异或(^)

异或运算,相同为0,不同为1。
它在书本上的符号是这样的 ⨁ \bigoplus 。它也叫半加运算,就是数值相加之后不进位。比如二进制的1+1结果是10,进位为1再写0。如果不进位,那么1异或1就等于0。1与0的异或可以直接看作是相加。

0 ^ 0 = 0
0 ^ 1 = 1
1 ^ 0 = 1
1 ^ 1 = 0

补充:相等的两个数值,异或的结果为0
在对称加密算法中,经常会使用到异或运算。
来个小案例,a=1314520, key=12345678。密文 b = a ^ key = 11038614。明文a = b ^ key = 1314520

取反

~ 取反运算,0 则变为 1,1 则变为 0,如:

~1 0 0 1 1 = 0 1 1 0 0
~1 0 1 0 1 = 0 1 0 1 0

常见位运算问题

位操作实现乘除法

数 x 向右移一位,相当于将 x 除以 2;数 x 向左移一位,相当于将 a 乘以 2

x <<= 3; // x = x << 3 , x = x*8
x >>= 4; // x = x >> 4 , x = x/16
x = (x<<1) + (x<<3); // x = x*2 + x*8 , x = x*10

位操作交换两数

int x = 2, y = 5;
//简写  x^=y, y^=x, x^=y; 

x = x ^ y;
y = y ^ x;
x = x ^ y;

判断奇偶数

将数转为二进制后,只要根据数的最后一位是 0 还是 1 就能判断奇偶。为 0 就是偶数,为 1 就是奇数。

// 判断是奇数,普通的
public boolean isOdd1(int i) {
    return i % 2 != 0;
}
// 位与运算
public boolean isOdd2(int i) {
    return 1 == (i & 1);
}

求余数

位与也是可以用来取余的,但是有一个条件:除数必须是2的n次幂才行。

27%8=3 (11011是27的二进制表示,1000是8的二进制表示,11是3的二进制表示)
11011 & (1000 - 1)
=11011 & 0111
=00011

其实很明显了,在二进制计算中,
一个数右移1位相当于除以2的商,而恰巧被移除出去的那一位就是除以2得到的余数。而且,不仅是除以2,对于一个数k要除以2的n次方,也就是相当于把k向右移n位,被移出去的n位即正好是我们要求是余数。那么问题就简单了,实际上,对于除数是2的n次方的算式,我们只需要得到被除数的低n位就可以了。而正好,对于2的n次方这样的数,我们将其转换为二进制之后,它就是第n+1位为1,其余低位都为0的数,因此我们将其减1,就得到了第n+1位为0,而其他位都为1的数。用此数与被除数k进行位与运算,就得到了被除数的低n位二进制数,也就是 k%n^2 的结果。

例如:27二进制是 11011
27除以2的余数是,27二进制的低1位,余数是1。27除以2^3的余数是,27二进制的低3位,余数是011。
27除以2=7余1 11011左移1位,商就是111,余数是1
27除以8=3余3 11011左移3位,商就是11, 余数是011

总结:
若一个数m满足:m=2^n,那么k % m = k & (m-1)

位操作交换符号

交换符号将正数变成负数,负数变成正数
整数取反加1,正好变成其对应的负数(补码表示);负数取反加一,则变为其原码,即正数

int reversal(int a) {
  return ~a + 1;
}

位操作求绝对值

整数的绝对值是其本身,负数的绝对值正好可以对其进行取反加一求得,即我们首先判断其符号位
(整数右移 31 位得到 0,负数右移 31 位得到 -1,即1…111…1(一共32个1)),然后根据符号进行相应的操作

int abs(int a) {
  int i = a >> 31;
  return i == 0 ? a : (~a + 1);
}

上面的操作可以进行优化,可以将 i == 0 的条件判断语句去掉。我们都知道符号位 i 只有两种情况,即 i = 0 为正,i = -1 为负。对于任何数与 0 异或都会保持不变,与 -1 即 1…111…1(一共32个1) 进行异或就相当于对此数进行取反,因此可以将上面三目元算符转换为((a^i)-i),即整数时 a 与 0 异或得到本身,再减去 0,负数时与 1…111…1(一共32个1) 异或将 a 进行取反,然后在加上 1,即减去 i(i =-1)

int abs2(int a) {
  int i = a >> 31;
  return ((a^i) - i);
}

位操作进行高低位交换

给定一个 16 位的无符号整数,将其高 8 位与低 8 位进行交换,求出交换后的值。

如:34520的二进制表示:10000110 11011000
将其高8位与低8位进行交换,得到一个新的二进制数:11011000 10000110
其十进制为55430

从上面移位操作我们可以知道,只要将无符号数 a>>8 即可得到其高 8 位移到低 8 位,高位补 0;将 a<<8 即可将 低 8 位移到高 8 位,低 8 位补 0,然后将 a>>8 和 a<<8 进行或操作既可求得交换后的结果。

unsigned short a = 34520;
a = (a >> 8) | (a << 8);

位操作进行二进制逆序

将无符号数的二进制表示进行逆序,求取逆序后的结果

如:数34520的二进制表示:10000110 11011000
逆序后则为:00011011 01100001
它的十进制为7009

在字符串逆序过程中,可以从字符串的首尾开始,依次交换两端的数据。在二进制中使用位的高低位交换会更方便进行处理,这里我们分组进行多步处理。

第一步:以每 2 位为一组,组内进行高低位交换

交换前: 10 00 01 10 11 01 10 00
交换后: 01 00 10 01 11 10 01 00

第二步:在上面的基础上,以每 4 位为 1 组,组内高低位进行交换

交换前: 0100 1001 1110 0100
交换后: 0001 0110 1011 0001

第三步:以每 8 位为一组,组内高低位进行交换

交换前: 00010110 10110001
交换后: 01100001 00011011

第四步:以每16位为一组,组内高低位进行交换

交换前: 0110000100011011
交换后: 0001101101100001

对于上面的第一步,依次以 2 位作为一组,再进行组内高低位交换,这样处理起来比较繁琐,下面介绍另外一种方法进行处理。先分别取原数 10000110 11011000 的奇数位和偶数位,将空余位用 0 填充:

原数: 10000110 11011000
奇数位: 10000010 10001000
偶数位: 00000100 01010000

再将奇数位右移一位,偶数位左移一位,此时将两个数据相或即可以达到奇偶位上数据交换的效果:

原数: 10000110 11011000
奇数位右移一位: 0 10000010 1000100
偶数位左移一位:0000100 01010000 0
两数相或得到: 01001001 11100100

上面的方法用位操作可以表示为:取a的奇数位并用 0 进行填充可以表示为:a & 0xAAAA。取a的偶数为并用 0 进行填充可以表示为:a & 0x5555。
因此,上面的第一步可以表示为:
a = ((a & 0xAAAA) >> 1) | ((a & 0x5555) << 1)
同理,可以得到其第二、三和四步为:
a = ((a & 0xCCCC) >> 2) | ((a & 0x3333) << 2)
a = ((a & 0xF0F0) >> 4) | ((a & 0x0F0F) << 4)
a = ((a & 0xFF00) >> 8) | ((a & 0x00FF) << 8)

因此整个操作为:

unsigned short a = 34520;
a = ((a & 0xAAAA) >> 1) | ((a & 0x5555) << 1);
a = ((a & 0xCCCC) >> 2) | ((a & 0x3333) << 2);
a = ((a & 0xF0F0) >> 4) | ((a & 0x0F0F) << 4);
a = ((a & 0xFF00) >> 8) | ((a & 0x00FF) << 8);

位操作统计二进制中 1 的个数

统计二进制1的个数可以分别获取每个二进制位数,然后再统计其1的个数,此方法效率比较低。这里介绍另外一种高效的方法,同样以 34520 为例,我们计算其 a &= (a-1)的结果:
第一次:计算前:1000 0110 1101 1000 计算后:1000 0110 1101 0000
第二次:计算前:1000 0110 1101 0000 计算后:1000 0110 1100 0000
第三次:计算前:1000 0110 1100 0000 计算后:1000 0110 1000 0000

我们发现,每计算一次,二进制中就少了一个 1。则我们可以通过下面方法去统计

count = 0  
while(a){  
	a = a & (a - 1);  
	count++;  
}  

补充,当一个数最后的统计结果为1时,说明此数是2的n次幂

检测整数 n 是否是 2 的幂次

N如果是2的幂次,则N满足两个条件。

  • N > 0
  • N的二进制表示中,只有一个1

因为N的二进制表示中只有一个1,所以使用N & (N - 1)将N唯一的一个1消去,应该返回0

public boolean isSecondPower(int x){
    return x>0 && 0 == (x & (x-1));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值