求解改线性规划对应的最大值Z以及x1,x2,x3;
一、利用matlab解题
1)利用linprog函数来解决线性规划问题:
z = linprog(f,A,b,Aeq,beq,lb,ub,options)
其中:Ax ≤ b 为不等式约束,Aeq x = b 为等式约束,lb≤ x ≤ub为x的上下界,表示变量x的可行区间;A、Aeq均为矩阵,x,b,beq,lb,ub均为列向量。f 目标函数的向量;题目中求解的是max z;而利用linprog函数求解的是最小值min z;
2)代码求解过程:
>> f = [-2 -4 3];
>> A = [3 4 2; 2 1 2; 1 3 2];
>> b = [60; 40; 80];
>> Aeq = [];
>> beq = [];
>> lb = [0;0;0];
>> ub = [];
>> [x,fval] = linprog(f,A,b,Aeq,beq,lb,ub)
Optimal solution found.
x =
0
15
0
fval =