0/1背包
模型:给定 N N N个物品,其中第 i i i个物品的体积为 V i V_i Vi,价值为 W i W_i Wi。有一容积为 M M M的背包,要求选择一些物品放入背包,使得物品总体积不超过 M M M的前题下,物品的价值总和最大。
二维DP
- F [ i , j ] F[i,j] F[i,j]表示从前 i i i个物品中选出了总体积为 j j j的物品,物品最大价值和。
- F [ i , j ] = m a x { F [ i − 1 , j ] F [ i − 1 , j − V i ] + W i } F[i,j]=max\begin{Bmatrix} F[i-1,j] \\ F[i-1,j-V_i]+W_i \end{Bmatrix} F[i,j]=max{
F[i−1,j]F[i−1,j−Vi]+Wi}
第一种是不选第 i i i个物品,直接继承 i − 1 i-1 i−1.
第二种是选第 i i i个物品,将上一次取物品的价值加上这个物品的价值,且 j ≥ V i j\ge V_i j≥Vi. - 初值:F[0][0]=0,其余为负无穷(防止最大价值本身为0,无法判断是否取物品,能判断F[n][m]是否恰好装满)。
- 目标: m a x { F [ N , j ] } , 0 ≤ j ≤ M max\{ F[N,j]\},0\le j\le M max{ F[