课程总结——背包

这篇博客详细介绍了各种类型的背包问题,包括0/1背包、完全背包、多重背包、分组背包和多维费用背包。通过二维DP和优化一维DP的方法解决这些问题,并探讨了滚动数组的优化技巧。此外,还讲解了直接拆分法和二进制拆分法在多重背包中的应用。
摘要由CSDN通过智能技术生成

0/1背包

模型:给定 N N N物品,其中第 i i i个物品的体积为 V i V_i Vi,价值为 W i W_i Wi。有一容积为 M M M的背包,要求选择一些物品放入背包,使得物品总体积不超过 M M M的前题下,物品的价值总和最大。

二维DP
  • F [ i , j ] F[i,j] F[i,j]表示从前 i i i个物品中选出了总体积为 j j j的物品,物品最大价值和。
  • F [ i , j ] = m a x { F [ i − 1 , j ] F [ i − 1 , j − V i ] + W i } F[i,j]=max\begin{Bmatrix} F[i-1,j] \\ F[i-1,j-V_i]+W_i \end{Bmatrix} F[i,j]=max{ F[i1,j]F[i1,jVi]+Wi}
    第一种是不选第 i i i个物品,直接继承 i − 1 i-1 i1.
    第二种是选第 i i i个物品,将上一次取物品的价值加上这个物品的价值,且 j ≥ V i j\ge V_i jVi.
  • 初值:F[0][0]=0,其余为负无穷(防止最大价值本身为0,无法判断是否取物品,能判断F[n][m]是否恰好装满)。
  • 目标: m a x { F [ N , j ] } , 0 ≤ j ≤ M max\{ F[N,j]\},0\le j\le M max{ F[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值