在高中数学的学习过程中,我们应该会知道这样一个公式:
∑
k
=
1
n
(
2
k
−
1
)
=
n
2
\sum^n_{k=1}\left(2k-1\right)=n^2
k=1∑n(2k−1)=n2
那么我们就会想到
∑
k
=
1
n
k
2
=
∑
k
=
1
n
(
∑
k
=
1
n
(
2
k
−
1
)
)
\sum^n_{k=1}k^2=\sum^n_{k=1}\left(\sum^n_{k=1}\left(2k-1\right)\right)
k=1∑nk2=k=1∑n(k=1∑n(2k−1))
展开来写,便是:
∑
k
=
1
n
k
2
=
1
+
(
1
+
3
)
+
(
1
+
3
+
5
)
+
⋯
+
[
1
+
3
+
5
+
⋯
+
(
2
n
−
1
)
]
=
1
⋅
n
+
3
⋅
(
n
−
1
)
+
5
⋅
(
n
−
2
)
+
⋯
+
(
2
n
−
1
)
⋅
[
n
−
(
n
−
1
)
]
=
n
+
(
3
n
−
3
)
+
(
5
n
−
10
)
+
⋯
+
[
(
2
n
−
1
)
n
−
(
2
n
−
1
)
(
n
−
1
)
]
=
(
∑
k
=
1
n
(
2
k
−
1
)
)
⋅
n
−
∑
k
=
1
n
[
(
2
k
−
1
)
(
k
−
1
)
]
=
n
2
⋅
n
−
∑
k
=
1
n
(
2
k
2
−
3
k
+
1
)
=
n
3
−
2
∑
k
=
1
n
k
2
+
3
∑
k
=
1
n
k
−
∑
k
=
1
n
=
n
3
−
2
∑
k
=
1
n
k
2
+
3
⋅
n
(
1
+
n
)
2
−
n
\begin{split} \sum_{k=1}^n k^2 &= 1+(1+3)+(1+3+5)+\dots+[1+3+5+\dots+(2n-1)]\\ &= 1\cdot n+3\cdot (n-1)+5\cdot (n-2)+\dots +(2n-1)\cdot [n-(n-1)]\\ &= n+(3n-3)+(5n-10)+\dots +[(2n-1)n-(2n-1)(n-1)]\\ &= (\textstyle\sum_{k=1}^n(2k-1))\cdot n-\textstyle\sum_{k=1}^n[(2k-1)(k-1)]\\ &= n^2\cdot n-\textstyle\sum_{k=1}^n(2k^2-3k+1)\\ &= n^3-2\textstyle\sum_{k=1}^nk^2+3\textstyle\sum_{k=1}^nk-\textstyle\sum_{k=1}^n\\ &=n^3-2\textstyle\sum_{k=1}^nk^2+3\cdot\frac{n(1+n)}{2}-n \end{split}
k=1∑nk2=1+(1+3)+(1+3+5)+⋯+[1+3+5+⋯+(2n−1)]=1⋅n+3⋅(n−1)+5⋅(n−2)+⋯+(2n−1)⋅[n−(n−1)]=n+(3n−3)+(5n−10)+⋯+[(2n−1)n−(2n−1)(n−1)]=(∑k=1n(2k−1))⋅n−∑k=1n[(2k−1)(k−1)]=n2⋅n−∑k=1n(2k2−3k+1)=n3−2∑k=1nk2+3∑k=1nk−∑k=1n=n3−2∑k=1nk2+3⋅2n(1+n)−n
那么,我们就可以把
∑
k
=
1
n
k
2
\sum^n_{k=1}k^2
∑k=1nk2 放在等号的一侧,即
3
∑
k
=
1
n
k
2
=
n
3
+
3
n
(
1
+
n
)
2
−
n
3\sum\limits_{k=1}^{n}{k^2}=n^3+\frac{3n(1+n)}{2}-n
3k=1∑nk2=n3+23n(1+n)−n
于是,
∑
k
=
1
n
k
2
=
n
3
+
3
n
(
1
+
n
)
2
−
n
3
=
2
n
3
+
3
n
2
+
n
6
=
n
(
n
+
1
)
(
2
n
+
1
)
6
\sum\limits_{k=1}^{n}{k^2}=\frac{n^3+\frac{3n(1+n)}{2}-n}{3}=\frac{2n^3+3n^2+n}{6}=\frac{n(n+1)(2n+1)}{6}
k=1∑nk2=3n3+23n(1+n)−n=62n3+3n2+n=6n(n+1)(2n+1)
平方数列求和的一种非正常求法
于 2024-05-15 20:13:11 首次发布