平方数列求和的一种非正常求法

在高中数学的学习过程中,我们应该会知道这样一个公式:
∑ k = 1 n ( 2 k − 1 ) = n 2 \sum^n_{k=1}\left(2k-1\right)=n^2 k=1n(2k1)=n2
那么我们就会想到
∑ k = 1 n k 2 = ∑ k = 1 n ( ∑ k = 1 n ( 2 k − 1 ) ) \sum^n_{k=1}k^2=\sum^n_{k=1}\left(\sum^n_{k=1}\left(2k-1\right)\right) k=1nk2=k=1n(k=1n(2k1))
展开来写,便是:
∑ k = 1 n k 2 = 1 + ( 1 + 3 ) + ( 1 + 3 + 5 ) + ⋯ + [ 1 + 3 + 5 + ⋯ + ( 2 n − 1 ) ] = 1 ⋅ n + 3 ⋅ ( n − 1 ) + 5 ⋅ ( n − 2 ) + ⋯ + ( 2 n − 1 ) ⋅ [ n − ( n − 1 ) ] = n + ( 3 n − 3 ) + ( 5 n − 10 ) + ⋯ + [ ( 2 n − 1 ) n − ( 2 n − 1 ) ( n − 1 ) ] = ( ∑ k = 1 n ( 2 k − 1 ) ) ⋅ n − ∑ k = 1 n [ ( 2 k − 1 ) ( k − 1 ) ] = n 2 ⋅ n − ∑ k = 1 n ( 2 k 2 − 3 k + 1 ) = n 3 − 2 ∑ k = 1 n k 2 + 3 ∑ k = 1 n k − ∑ k = 1 n = n 3 − 2 ∑ k = 1 n k 2 + 3 ⋅ n ( 1 + n ) 2 − n \begin{split} \sum_{k=1}^n k^2 &= 1+(1+3)+(1+3+5)+\dots+[1+3+5+\dots+(2n-1)]\\ &= 1\cdot n+3\cdot (n-1)+5\cdot (n-2)+\dots +(2n-1)\cdot [n-(n-1)]\\ &= n+(3n-3)+(5n-10)+\dots +[(2n-1)n-(2n-1)(n-1)]\\ &= (\textstyle\sum_{k=1}^n(2k-1))\cdot n-\textstyle\sum_{k=1}^n[(2k-1)(k-1)]\\ &= n^2\cdot n-\textstyle\sum_{k=1}^n(2k^2-3k+1)\\ &= n^3-2\textstyle\sum_{k=1}^nk^2+3\textstyle\sum_{k=1}^nk-\textstyle\sum_{k=1}^n\\ &=n^3-2\textstyle\sum_{k=1}^nk^2+3\cdot\frac{n(1+n)}{2}-n \end{split} k=1nk2=1+(1+3)+(1+3+5)++[1+3+5++(2n1)]=1n+3(n1)+5(n2)++(2n1)[n(n1)]=n+(3n3)+(5n10)++[(2n1)n(2n1)(n1)]=(k=1n(2k1))nk=1n[(2k1)(k1)]=n2nk=1n(2k23k+1)=n32k=1nk2+3k=1nkk=1n=n32k=1nk2+32n(1+n)n
那么,我们就可以把 ∑ k = 1 n k 2 \sum^n_{k=1}k^2 k=1nk2 放在等号的一侧,即
3 ∑ k = 1 n k 2 = n 3 + 3 n ( 1 + n ) 2 − n 3\sum\limits_{k=1}^{n}{k^2}=n^3+\frac{3n(1+n)}{2}-n 3k=1nk2=n3+23n(1+n)n
于是,
∑ k = 1 n k 2 = n 3 + 3 n ( 1 + n ) 2 − n 3 = 2 n 3 + 3 n 2 + n 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{k=1}^{n}{k^2}=\frac{n^3+\frac{3n(1+n)}{2}-n}{3}=\frac{2n^3+3n^2+n}{6}=\frac{n(n+1)(2n+1)}{6} k=1nk2=3n3+23n(1+n)n=62n3+3n2+n=6n(n+1)(2n+1)

原文
知乎 - 平方数列求和的一种非正常求法
博客园 - 平方数列求和的一种非正常求法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值