Numpy基础点总结

Numpy基础知识

一.numpy介绍

numpy是Python的一个用于科学计算的基础包,它提供了许多功能,其中包括:

1.多维数组对象:numpy的核心是ndarray,它是一个具有固定大小的同类数据元素的多维数组。

2.数学函数:numpy提供了许多数学函数,例如:三角函数,对数函数,线性代数运算,统计函数等。

3.随机数生成:numpy包含了用于生成各种随机数的函数,如:均匀分布,正态分布等。

4.文件操作:读取或写入各种文件格式的数据。

5.线性代数运算:矩阵乘法,求逆,求特征值等。

当然还有许多功能,这里就不一一赘述了,基于以上部分内容,掌握简单的基本语法。

二.ndarray属性

import numpy as np
a=np.arange(15).reshape(3,5) # 元素范围1-15包左不包右,维度3行5列
a=np.array([1,2,3])
a  #array([1, 2, 3])
print(a.shape) #数组维度 (3,)
print(a.ndim)  #数组轴个数 1
# 这里每个人运行结果会不同,我的是int32,但是无关紧要
print(a.dtype) #数组元素类型 astype可以用来转换数据类型
print(a.itemsize) #数组中每个元素字节大小 4
print(a.size) #数组元素个数 3
print(type(a)) #<class 'numpy.ndarray'>

zero(),ones(),empty()演示

函数zeros创建一个全是0的数组,

函数ones创建一个全1的数组,

函数empty创建一个内容随机并且依赖于内存状态的数组。默认创建的数组类型(dtype)都是float64

# zeros 用来生成全0数组,传入维度
zeros=np.zeros((3,4)) # 它由三个一维数组组成
zeros

结果演示如下:

# ones 用来生成全1数组,传入维度
ones=np.ones((2,3,4
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值