这里我们先设置一个示例,后面的文章中会根据示例来进行讲解
假设有一个程序是判断一个整形数字是否属于1-100
目录
1.等价类法
概念:系统性的确定要输入的测试条件的方法可以看出概念非常抽象,那我们就直接用示例来理解
如上面程序,我们需要设计的等价类有两种
1.有效等价类:有效切有意义的集合
在1-100之间的数
2.无效等价类:无效且无意义的集合
大于100或者小于1的数就是无效等价类
注意:假如题目中给的是输入的数字是否为1或50或100,那么有效等价类就是1,50,100,这种不是范围的必须全部覆盖,无效等价类就是除了这三个数之外的其他数
2.边界值法
概念:边界值分析法就是对输入或输出的边界值进行测试的一种黑盒测试方法。通常边界值分析法是作为对等价类划分法的补充,这种情况下,其测试用例来自等价类的边界
我们为上述示例设置边界值测试用例就是
1,100,0,101
边界值法主要的关注对象成了边界
3.判定表法
判定表法就是对我们已知的条件和操作进行组合并绘制判定表
这里我们为了方便理解,我们给上述示例加一个条件,如果数字为50,则多输出一个yes,对此做出判定表如下:
4.场景设计法
事件流:事件触发时的情景便形成了场景,而同一事件不同的触发顺序和处理结果就形成事件流
场景设计法存在基本事件流和备选事件流
正常执行结束的事件就是基本事件流,如上述示例中,假如用户输入正常的整形数字,那么程序就会按照基本事件流执行下去,而如果用户输入一个浮点型的数据,那么程序就无法正常执行了,那么我们针对这种事件流,就需要做处理,则成为备选事件流
5.错误猜测法
错误猜测法我们目前是无法很好的使用的,因为错误猜测法就是根据测试人员的从业经验进行猜测项目可能出现的BUG,并进行测试
6.正交法
概念:正交试验设计(Orthogonal experimentaldesign)是研究多因素多水平的一种设计方法,它是根据正交性,由试验因素的全部水平组合中挑选出部分有代表性的点进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优的水平组合。
正交表中的元素:
因素:在一个项目中,凡是要考察的变量都成为因素
水平(位级):在考察的变量中的值,叫做水平
类似这种就是一个正交表
正交表的构成:
行数:正交表有几行,即试验次数,上图有9行
因素数:即有多少个因素即为列号,上图为4
水平数:即为最大的值,上图为3
正交表的表示形式:行数(因素数*水平数) -> L = N(TC)
正交表的性质:
1.每一列中,出现的每个值的个数是相同的
这个很好理解的,就不过多赘述
2.任意两列中,各有序对出现的次数一样多
如上表,第一列和第二列中第一行(1,1)只出现了一次,那么(1,2),(1,3)(2,2......也只会出现一次
我们人工去设计正交表太复杂了,所以我们可以使用allpairs来生成正交表,这里就不过多讨论软件的使用方法了,感兴趣可以自己去百度一下