(学习笔记)地理加权回归(GWR)、多尺度地理加权回归(MGWR)原理与软件实现

1回归

1.1回归

回归分析是最常用的社会科学统计方法。回归用于评估两个或更多要素属性之间的关系。通过回归分析,我们可以对空间关系进行建模、检查和探究;回归分析还可以帮助解释所观测到的空间模式背后的诸多因素,例如为什么有些地区会持续发生年轻人早逝或者糖尿病的发病率比预期要高的情况。

回归可以分为两类,一类是线性回归,另一类是非线性的基于机器学习算法的回归。

线性回归,用来确定两种或两种以上变量间相互依赖的定量关系。包括普通最小二乘法OLS (Ordinary Least Squares)、广义线性回归GLR(Generalized Linear Regression)、以及地理加权回归GWR(Geographically weighted Regression)等等。

1.2线性回归存在问题

线性回归经常会遇到两个问题:

一是解释变量多重共线性,或者说冗余,这会导致模型估计失真或难以估计准确,我们希望因变量与不同的解释变量之间存在线性关系,同时不同的解释变量彼此之间不是线性相关的。

二是模型过拟合,过拟合是指为了得到一致假设而使假设变得过度严格。一般是由于强化了太多的局部特征,而导致模型的适应性(泛化)太弱。

三是最小二乘回归存在两个基本假设:误差随机模型残差不相关。但是,空间数据间的联系总是存在着空间异质性和空间自相关,从而违背了OLS模型的使用原则。

2 地理加权回归(GWR)

2.1简介

早期空间统计分析技术多从全局假设的角度出发,认为空间变量关系是固定的,不随空间位置的变化而改变。这个前提假设明显违背了现实地理世界空间关系的异质性或非平稳性规律。因此,区别于传统研究“单一普适”的空间关系统计分析方法,如何对空间异质性进行精确局部描述的空间分析方法越来越多地受到重视,如随机系数模型、空间变参数回归分析模型和局部加权回归分析模型。

在总结了前人关于局部回归和变参研究的基础上,美国科学院院士,英国圣安德鲁斯大学的A. Stewart Fotheringham教授在1996年,正式提出了地理加权回归模型(Geographical Weighted Regression , GWR)。地理加权回归是一种基于空间变化关系建模的局部线性回归方法,它在研究区域的每一处产生一个描述局部关系的回归模型,从而能很好的解释变量的局部空间关系与空间异质性。

ps.引入的空间关系是什么?

2.2公式与解析

基础 GWR 模型一般可表达如下:

式中,为在位置处的因变量值;为位置处的自变量值;为回归分析点的坐标;为截距项;为回归分析系数。

虾神说对GWR的解释

 2.3应用

计算全局莫兰斯指数,具有空间异质性时使用。

3 分类与具体实现

3.1模型对比

 (来源bilibli: BV1S14y1A7vb)

3.2多尺度地理加权MGWR实操

3.2.1数据与软件准备

(1)数据:自变量、因变量、样本的经纬度坐标(投影)

(2)软件:GWR(GWR409.ZIP (dropbox.com))(需翻墙)

MGWR2.2(Windows SPARC MGWR |地理科学与城市规划学院 (asu.edu))(直接访问)

 3.2.2具体操作

 3.2.3数据分析

 (1)GWR结果分析

R方数值越大说明模型拟合越好

(2)MGWR结果分析

 

 上述处理后得到图片(可进行冷热点分析)

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值