static void gcm_zeromem(void* out, uint16_t outlen)
{
uint8_t* ptr = out;
while (outlen > 0)
{
*ptr++ = 0;
outlen--;
}
}
static void gcm_memcpy(void* dec, const void* src, uint16_t len)
{
uint8_t* d = dec;
const uint8_t* s = src;
while (len > 0)
{
*d++ = *s++;
len--;
}
}
void gcm_gf_mult(const uint8_t* a, const uint8_t* b, uint8_t* c)
{
#if GCM_HW_ENABLE
halGcmGfMult(a, b, c);
#else
uint8_t Z[16], V[16];
uint8_t x, y, z;
gcm_zeromem(Z, 16);
gcm_memcpy(V, a, 16);
for (x = 0; x < 128; x++)
{
if ((b[x >> 3] & mask[x & 7]) != 0)
{
for (y = 0; y < 16; y++)
{
Z[y] ^= V[y];
}
}
z = (uint8_t)(V[15] & 0x01);
gcm_rightshift(V);
if (z != 0)
{
V[0] ^= (uint8_t)0xE1;
}
}
gcm_memcpy(c, Z, 16);
#endif
}
这段代码是一个在GF(2128)域上进行乘法操作的函数实现。GF(2128)表示一个伽罗华域,其中的元素可以通过128位二进制数来表示。这个函数可以用于加密、解密或其他需要伽罗华域乘法的密码学应用中。
函数原型解释:
gcm_gf_mult(const uint8_t* a, const uint8_t* b, uint8_t* c)
:这个函数接受两个16字节(128位)的乘数a
和b
,计算它们的乘积,并将结果存储在16字节的c
中。
函数实现细节:
- 硬件加速:如果定义了
GCM_HW_ENABLE
,则调用halGcmGfMult
函数,该函数是硬件加速版本的伽罗华域乘法。 - 软件实现:如果没有硬件加速,则使用以下步骤进行软件实现:
- 初始化两个16字节的数组
Z
和V
,其中Z
用于存储乘积结果,V
用于存储乘数a
的副本。 - 使用循环,对乘数
b
的每一位进行检查。如果某一位为1,则将V
与Z
进行异或操作(相当于加法)。 - 在每次循环中,对
V
进行右移操作,并根据最低位是否为1来决定是否对V
的第一个字节进行异或操作(相当于乘以x并模上一个特定的多项式)。 - 循环结束后,将
Z
的内容复制到结果c
中。
- 初始化两个16字节的数组
这段代码是一个典型的伽罗华域乘法实现,它结合了位操作和数组操作来实现高效的乘法运算。这种乘法运算在密码学中非常重要,特别是在实现某些加密算法时。