GCM GF域乘软件实现

static void gcm_zeromem(void* out, uint16_t outlen)  
{  
    uint8_t* ptr = out;  
    while (outlen > 0)  
    {  
        *ptr++ = 0;  
        outlen--;  
    }  
}  
  
static void gcm_memcpy(void* dec, const void* src, uint16_t len)  
{  
    uint8_t* d = dec;  
    const uint8_t* s = src;  
    while (len > 0)  
    {  
        *d++ = *s++;  
        len--;  
    }  
}

void gcm_gf_mult(const uint8_t* a, const uint8_t* b, uint8_t* c)  
{  
    #if GCM_HW_ENABLE  
    halGcmGfMult(a, b, c);  
    #else  
    uint8_t Z[16], V[16];  
    uint8_t x, y, z;  
  
    gcm_zeromem(Z, 16);  
    gcm_memcpy(V, a, 16);  
  
    for (x = 0; x < 128; x++)  
    {  
        if ((b[x >> 3] & mask[x & 7]) != 0)  
        {  
            for (y = 0; y < 16; y++)  
            {  
                Z[y] ^= V[y];  
            }  
        }  
  
        z = (uint8_t)(V[15] & 0x01);  
        gcm_rightshift(V);  
  
        if (z != 0)  
        {  
            V[0] ^= (uint8_t)0xE1;  
        }  
    }  
  
    gcm_memcpy(c, Z, 16);  
    #endif  
}

这段代码是一个在GF(2128)域上进行乘法操作的函数实现。GF(2128)表示一个伽罗华域,其中的元素可以通过128位二进制数来表示。这个函数可以用于加密、解密或其他需要伽罗华域乘法的密码学应用中。

函数原型解释:

  • gcm_gf_mult(const uint8_t* a, const uint8_t* b, uint8_t* c):这个函数接受两个16字节(128位)的乘数ab,计算它们的乘积,并将结果存储在16字节的c中。

函数实现细节:

  1. 硬件加速:如果定义了GCM_HW_ENABLE,则调用halGcmGfMult函数,该函数是硬件加速版本的伽罗华域乘法。
  2. 软件实现:如果没有硬件加速,则使用以下步骤进行软件实现:
    • 初始化两个16字节的数组ZV,其中Z用于存储乘积结果,V用于存储乘数a的副本。
    • 使用循环,对乘数b的每一位进行检查。如果某一位为1,则将VZ进行异或操作(相当于加法)。
    • 在每次循环中,对V进行右移操作,并根据最低位是否为1来决定是否对V的第一个字节进行异或操作(相当于乘以x并模上一个特定的多项式)。
    • 循环结束后,将Z的内容复制到结果c中。

这段代码是一个典型的伽罗华域乘法实现,它结合了位操作和数组操作来实现高效的乘法运算。这种乘法运算在密码学中非常重要,特别是在实现某些加密算法时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值