数模赛后反思
这次数学建模比赛只能说是天时地利人和一个不占,比赛做的非常的痛苦。首先是因为本身实力不够,之前对数模的了解不多;再加上报名的时候有点过于着急了,急着组好了队伍,队伍三个人都是研一,很多报名的队伍都是高年级的人带低年级的同学这样,所以起点就比别人低一点;除此之外,还有找队友的时候没有好好筛选,选了一个不太靠谱的同学,导致两个人基本干了全部的事情,很裂开,时间根本来不及,后面几问基本都没好好做;还有一些其他的原因,比如没有经验导致做题的时候都直接靠直觉去做没有章法、今年的题目确实比较难等等。总而言之,第一次比赛真的挺裂开的,所以好好总结反思一下,争取明年可以多拿点创新学分回来。
赛前准备部分反思
今年是第一年参加数学建模比赛,之前就没什么经验,再加上也没认真准备,真的够呛。关于赛前准备,我的感觉是最好先找几篇优秀范文,把其中关于数据的处理方法上手实操一下。可以先提前把能用的到的模型代码什么准备好,如果代码能力强的,比赛过程中让GPT生成再改也可以,就是会很耗时间,最好是提前准备好能运行的代码,减少比赛过程中的工作量。在日常学习过程中,就可以自己尝试搭一下代码,然后把代码保存好,以便以后可以使用。除此之外,因为这次比赛的数据格式比较多,tif、nc文件等等,现场写代码处理真的很麻烦,最好在赛前就准备好。
总结一下,要做的事情:
- 找几篇优秀范文,把范文中提到的数据处理方式提前写好代码。
- 常见的数据格式处理代码要准备好。
- 常见的数学建模中运用到的模型代码要准备好,其原理可以不用了解,直接去网上扒能跑的代码就行。当然最好是了解模型的代码,原理最好也整理好,比赛的时候就可以直接复制粘贴了。
赛中做题部分反思
数模总共是四天半加四夜,看着比本科时的数模多了一天,但实际上时间根本不够用。第一个,研究生的数学建模数据可能就会比本科时要难处理很多,像这次比赛的D题,数据集就有六个,好几个G的数据,很多格式都不是日常会接触的格式;还有一题更夸张,数据是视频格式的,之前没有相关研究经历根本不可能做这道题。第二个,研究生建模的论文(厉害的人)会写很长,实验室里的师兄论文普遍都是八十页左右,我之前参考的优秀论文最短的是七十几页,长的有八九十页,最长的是一百多页。虽然论文中包括了代码,但正文部分也非常多了。所以,从这两点也可以看出,时间规划非常重要,论文一定一定一定要做题边写,不然真的很容易来不及的。
像本人这次数模,时间规划就极其不合理。整场基本都在做数据处理,想要把所有数据集都处理出来,把数据格式统一,然后再处理数据。但是又没有做总体的规划,实际上处理数据时也有不少问题,导致到最后题目都没完全思考明白,纯纯在处理数据了。后面一天就在疯狂赶论文,直接通宵熬到第二天上午十一点多才结束。在写论文的时候才发现,写问题分析可以很大程度上帮助大家理清思路,知道要做些什么,很多前面费尽心思整出来的东西后面发现可能还用不上。所以,在开题的时候,最好先把问题分析写了,然后再开始处理数据什么的。而且,最好是把所有问题的问题分析都写好,因为题目前后具有关联性,前面的问题没有要求格式,后面的问题要求把好几个数据集联合处理时就出大问题了。
很多小白可能会觉得,看着题目就不太会做,没有思路。这种情况很正常,我这次参加比赛时,看着后面几问也不知道该怎么做,甚至于第一问我也不知道该怎么套模型。但实际做题时,参考网上的资料,大致可以明白怎么做题,所以不要怕没有思路,要先把数据处理完。拿到干净的数据之后,其实就大致知道该套什么模型了。如果实在不知道,那就多套几个模型,然后对比一下各个模型的结果。
其他也没有什么,总结一下就是:
- 选好题目,先写文档,把所有问题的问题分析写完。这样可以大致明确之后要做的事情。
- 如果不知道用什么模型,先把数据处理好,看看各个模型的限制、参考参考网上的资料,大致就知道接下来要干什么了。
- 接下来就是边写代码边写文档,文档推荐latex,不用总是调整格式。当然,实在不会的话用word也是可以的,就是图片表格什么的格式会比较麻烦,但好在熟悉,也不会耽误太多时间。
写在最后,其他也没啥好说的了,就希望大家的队友都靠谱,比赛都成功拿奖。