数字图像与机器视觉基础补充(1)

本文介绍了位图的基本概念,包括位图的性质和BMP文件的结构,通过分析不同颜色深度的BMP文件,探讨了图片的压缩比。此外,文章还涉及图像处理编程,如奇异函数分解、图像开闭运算在检测物体数量中的应用,以及利用图像处理技术定位并提取条形码字符。
摘要由CSDN通过智能技术生成

一、位图

1.1 位图简介

位图图像(bitmap),亦称为点阵图像或栅格图像,是由称作像素(图片元素)的单个点组成的。这些点可以进行不同的排列和染色以构成图样。当放大位图时,可以看见赖以构成整个图像的无数单个方块。扩大位图尺寸的效果是增大单个像素,从而使线条和形状显得参差不齐。然而,如果从稍远的位置观看它,位图图像的颜色和形状又显得是连续的。用数码相机拍摄的照片、扫描仪扫描的图片以及计算机截屏图等都属于位图。位图的特点是可以表现色彩的变化和颜色的细微过渡,产生逼真的效果,缺点是在保存时需要记录每一个像素的位置和颜色值,占用较大的存储空间。常用的位图处理软件有Photoshop(同时也包含矢量功能)、Painter和Windows系统自带的画图工具等,Adobe Illustrator则是矢量图软件。

1.2 BMP位图文件

常见的图像文件格式有:BMP、JPG(JPE,JPEG)、GIF等。

BMP图像文件(Bitmap-File)格式是Windows采用的图像文件存储格式,在Windows环境下运行的所有图像处理软件都支持这种格式。Windows 3.0以后的BMP文件都是指设备无关位图(DIB,device-independent bitmap)。BMP位图文件默认的文件扩展名是.BMP,有时它也会以.DIB或.RLE作扩展名。

1.3 BMP文件结构

BMP文件总体上由4部分组成,分别是位图文件头、位图信息头、调色板和图像数据
在这里插入图片描述
位图文件头:
在这里插入图片描述

二、图片处理

2.1 BMP分析

以皮卡丘原图为例(用电脑自带画板打开):
分别保存为 24位彩色和256色、16色、单色的位图(BMP)文件
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
文件大小比较:

24位位图文件大小:136KB
在这里插入图片描述
256色位图文件大小:46.4KB
在这里插入图片描述
16色位图文件大小:22.8KB
在这里插入图片描述
单色位图大小:5.73KB
在这里插入图片描述
用UltraEdit查看:

24位位图:
在这里插入图片描述

Windows的数据是倒着念的,这是PC电脑的特色。如果一段数据为50 1A 25 3C,倒着念就是3C 25 1A50,即0x3C251A50。

在这里插入图片描述

bfType:424Dh=’BM’,表示是Windows支持的BMP格式。
bfSize: 00 02 20 B6h整个文件的大小,000220B6h=139446。上面图片文件大小不包含文件头为136KB(139264B)。
bfReserved1、bfReserved2: 00 00 00 00必须设置为0。
bfOffBits: 36 00 00 00文件开始到位图数据之间的偏移量。

256色位图:
在这里插入图片描述
16色位图:
在这里插入图片描述
单色位图:
在这里插入图片描述

根据上面数据发现几张图片的文件头bfType、bfReserved1、bfReserved2是一样的,而 bfSize和bfOffBits有区别

2.2 不同图片格式的压缩比

1.将图片分别保存为BMP、JPG、GIF、PNG格式
在这里插入图片描述
因为BMP不是压缩的,所以以它为基准计算压缩比

BMP图片大小:136KB

图片格式 图片大小 压缩比
PNG 15.7KB 88%
JPG 16.5KB 87%
PNG 80.2KB 41%

三、图片处理编程

3.1 奇异函数分解(SDV)

代码:

import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib as mpl
from pprint import pprint


def restore1(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量
    m = len(u)
    n = len(v[0])
    a = np.zeros((m, n))
    for k in range(K):
        uk = u[:, k].reshape(m, 1)
        vk = v[k].reshape(1, n)
        a += sigma[k] * np.dot(uk, vk)
    a[a < 0] = 0
    a[a > 255] = 255
    # a = a.clip(0, 255)
    return np.rint(a).astype('uint8')


def restore2(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量
    m = len(u)
    n = len(v[0])
    a = np.zeros((m, n))
    for k in range(K+1):
        for i in range(m):
            a[i] += sigma[k] * u[i][k] * v[k]
    a[a < 0] = 0
    a[a > 255] = 255
    return np.rint(a).astype('uint8')


if __name__ == "__main__":
    A = Image.open("皮卡丘.jpg", 'r')
    print(A)
    output_path = r'./SVD_Output'
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    a = np.array(A)
    print(a.shape)
    K = 50
    u_r, sigma_r, v_r = np.linalg.svd(a[:, :, 0])
    u_g, sigma_g, v_g = np.linalg.svd(a[:, :, 1])
    u_b, sigma_b, v_b = np.linalg.svd(a[:, :, 2])
    plt.figure(figsize=(11, 9), facecolor='w')
    mpl.rcParams['font.sans-serif'] = ['simHei']
    mpl.rcParams['axes.unicode_minus'] = False
    for k in range(1, K+1):
        print(k)
        R = restore1(sigma_r, u_r, v_r, k)
        G = restore1(sigma_g, u_g, v_g, k)
        B = restore1(sigma_b, u_b, v_b, k)
        I = np.stack((R, G, B), axis=2)
        Image.fromarray(I).save('%s\\svd_%d.png' % (output_path, k))
        if k <= 12:
            plt.subplot(3, 4, k)
            plt.imshow(I)
            plt.axis('off')
            plt.title('奇异值个数:%d' % k)
    plt.suptitle('SVD与图像分解', fontsize=20)
    plt.tight_layout()
    # plt.subplots_adjust(top=0.9)
    plt.show()

结果:
在这里插入图片描述
在这里插入图片描述
观察发现随着奇异值的减少,图片变得越来越模糊

3.2 用图像的开闭运算(腐蚀-膨胀),检测出2个样本图像中硬币、细胞的个数

代码:

import cv2
import numpy as np

def stackImages(scale, imgArray):
    """
        将多张图像压入同一个窗口显示
        :param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半
        :param imgArray:元组嵌套列表,需要排列的图像矩阵
        :return:输出图像
    """
    rows = len(imgArray)
    cols = len(imgArray[0])
    rowsAvailable = isinstance(imgArray[0], list)
    width = imgArray[0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值