连续最大和
思路:
本题是一个经典的动态规划问题,简称dp问题,本题题意很简单,就是求哪一段的子数组的和最大,考察前面和对之后是否有贡献。
我们这里设计两个变量分别是
Max:代表最大值
和TempMax:代表临时最大值
并把他们都赋值为vector的第一个元素,
然后从第二个元素开始遍历所给定的数组v,每次去比较v[i]和v[i]+TempMax哪个大,谁大就让谁等于TempMax,其实这个TempMax就代表的是当前这个元素之前那一坨数的连续最大和,不是这个元素之前全部数据加起来的和。每一次都是这个元素与这个元素+TempMax相比,谁大就说明谁是当前的连续最大和,然后存到TempMax,然后每次再跟Max比较一下,其实Max就充当的是整个过程出现过的TempMax的最大值,如果当前出现的连续最大和TempMax比曾经的Max大就更新一下Max,最后这个Max就是在一个过程中出现过的最大值。
代码:
#include <iostream>
#include<vector>
using namespace std;
int Getmax(int a,int b)
{
return a>b?a:b;
}
int main()
{
int N=0;
cin>>N;
vector<int> v(N);
for(auto &tempv:v)
{
cin>>tempv;
}
int Max=v[0];
int TempMax=v[0];
for(int i=1;i<v.size();i++)
{
TempMax=Getmax(TempMax+v[i], v[i]);
if(TempMax>Max)
{
Max=TempMax;
}
}
cout<<Max;
return 0;
}
统计回文
思路:
首先以后面对这种题目描述比较长的题,不要害怕,它里面的大部分描述都只是为题做铺垫,所以读题时抓
住重点。什么是回文字符串,题目里面说就是一个正读和反读都一样的字符串 ,回文串也就是前后对称的字符串。本题是判断是否是回文串的变形题。字符串本身不一定是回文,把第二个字符串插入进去看是否是回文。
本题使用暴力求解方式计算即可,遍历str1,将str2 insert进入str1的每个位置,判断是否是回文,是就++count;需要注意的是这里不能 str1.insert(i, str2),这样的话str1改变了,判断下一个位置就不对了。所以每次使用str1拷贝构造一个str,然后str.insert(i, str2),再判断。
代码:
#include<iostream>
#include<vector>
#include<string>
using namespace std;
int is_Palindrome(string& test)
{
int begin = 0, end = test.size() - 1;
while (begin < end)
{
if (test[begin] != test[end])
{
return 0;
}
begin++;
end--;
}
return 1;
}
int main()
{
string str1;
getline(cin, str1);
string str2;
getline(cin, str2);
string test;
int count = 0;
for (int i = 0; i < str1.size(); i++)
{
string temp(str1);
test = str1.insert(i, str2);
if (is_Palindrome(test))
{
count++;
}
str1 = temp;
}
str1 += str2;
if (is_Palindrome(str1))
{
count++;
}
cout << count;
return 0;
}
end