李宏毅gpt个人记录

参考&转载:

李宏毅机器学习--self-supervised:BERT、GPT、Auto-encoder-CSDN博客

目录

GPT1基本实现


模型参数量
ELMO94M
BERT340M
GPT-21542M

        用无标注资料的任务训练完模型以后,它本身没有什么用,GPT 1只能够把一句话补完,可以把 Self-Supervised Learning 的 Model做微微的调整,把它用在其他下游的任务裡面,对于下游任务的训练,仍然需要少量的标记数据

GPT1基本实现

        例如有条训练语句是“台湾大学”,那么输入BOS后训练输出是台,再将BOS和"台"作为输入训练输出是湾,给它BOS "台"和"湾",然后它应该要预测"大",以此类推。模型输出embedding h,h再经过linear classification和softmax后,计算输出分布与正确答案之间的损失cross entropy,希望它越小越好。

详细计算过程: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值