【数模】因子分析

声明:文章参考数学建模清风的网课编写。

因子分析简介

 因子分析由斯皮尔曼在1904年提出,其在某种程度上可以被看成主成分分析的推广和扩展。
 因子分析通过研究变量间的相关系数矩阵,把这些变量间错综复杂的关系归结成少数几个综合因子,由于归结出的因子个数少于原始变量的个数,但它们又几乎包含原始变量的全部信息,所以也是对原有数据的降维。
 由于因子往往比主成分更易得到解释,故因子分析比主成分分析更容易成功。

因子分析一般模型

 假设有n个样本,p个指标,构成大小为n*p的样本矩阵x:
x = [ x 11 x 12 . . . x 1 p x 21 x 22 . . . x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 . . . x n p ] = [ x 1 , x 2 , … , x p ] x = \begin{bmatrix} x_{11}& x_{12}& ...& x_{1p}\\ x_{21}& x_{22}& ...& x_{2p}\\ \vdots & \vdots & \ddots & \vdots \\ x_{n1}& x_{n2}& ...& x_{np} \end{bmatrix}=\begin{bmatrix} x_{1},x_{2} ,\dots ,x_{p} \end{bmatrix} x= x11x21xn1x12x22xn2.........x1px2pxnp =[x1,x2,,xp]
 因子分析:
x 1 , x 2 , . . . , x p ⇒ f 1 , f 2 , . . . , f m ( m ≤ p ) , x_{1},x_{2},...,x_{p}\Rightarrow f_{1},f_{2},...,f_{m}(m\le p), x1,x2,...,xpf1,f2,...,fm(mp), 且它们满足: { x 1 = u 1 + a 11 f 1 + a 12 f 2 + . . . + a 1 m f m + ε 1 x 2 = u 2 + a 21 f 1 + a 22 f 2 + . . . + a 2 m f m + ε 2 ⋮ x p = u p + a p 1 f 1 + a p 2 f 2 + . . . + a p m f m + ε p \left\{\begin{matrix} x_{1} = u_{1} + a_{11}f_{1} + a_{12}f_{2} + ...+a_{1m}f_{m} + \varepsilon _{1}\\ x_{2} = u_{2} + a_{21}f_{1} + a_{22}f_{2} + ...+a_{2m}f_{m} + \varepsilon _{2}\\ \vdots \\ x_{p} = u_{p} + a_{p1}f_{1} + a_{p2}f_{2} + ...+a_{pm}f_{m} + \varepsilon _{p } \end{matrix}\right. x1=u1+a11f1+a12f2+...+a1mfm+ε1x2=u2+a21f1+a22f2+...+a2mfm+ε2xp=up+ap1f1+ap2f2+...+apmfm+εp
 其中 u i u_{i} ui x i x_{i} xi的均值, a i j a_{ij} aij x i x_{i} xi在因子 f j f_{j} fj上的载荷, f 1 , f 2 , . . . , f m f_{1},f_{2},...,f_{m} f1,f2,...,fm被称为公共因子, ε i \varepsilon _{i} εi被称为特殊因子,各因子的线性组合构成了原始的指标。注意:表示式中的每一个 x i 和 f i x_{i}和f_{i} xifi都是一个包含n个元素的列向量。

 上述式子可以简记为:
x = u + A f + ε x = u + Af + \varepsilon x=u+Af+ε
 其中:
A p × m = a i j ,     u = [ u 1 u 2 ⋮ u p ] ,     f = [ f 1 f 2 ⋮ f m ] ,     ε = [ ε 1 ε 2 ⋮ ε p ] A_{p\times m} = a_{ij}, \ \ \ u = \begin{bmatrix} u_{1}\\ u_{2}\\ \vdots \\ u_{p} \end{bmatrix}, \ \ \ f = \begin{bmatrix} f_{1}\\ f_{2}\\ \vdots \\ f_{m} \end{bmatrix}, \ \ \ \varepsilon = \begin{bmatrix} \varepsilon_{1}\\ \varepsilon_{2}\\ \vdots \\ \varepsilon_{p} \end{bmatrix} Ap×m=aij,   u= u1u2up ,   f= f1f2fm ,   ε= ε1ε2εp
 并假设公共因子彼此步相关,且具有单位方差;特殊因子彼此不相关且与公共因子不相关。

因子分析有几个比较重要的数据需要重点说明一下:

  • A A A被称为因子载荷矩阵;
  • A A A的行元素平方和 h i 2 = ∑ j = 1 m a i j 2 h_{i}^{2} = \sum_{j=1}^{m}a_{ij}^{2} hi2=j=1maij2表示原始变量 x i x_{i} xi对公共因子的依赖程度,被称为共性方差;
  • A A A的列元素平方和 g i 2 = ∑ i = 1 p a i j 2 g_{i}^{2} = \sum_{i=1}^{p}a_{ij}^{2} gi2=i=1paij2表示公因子 f j f_{j} fj对x的贡献;

因子分析步骤

  1. 将数据导入SPSS后点击分析->降维->因子:
    在这里插入图片描述

  2. 选择要分析的变量:
    在这里插入图片描述

  3. 在第2步页面,单击右侧描述并按图进行勾选:
    在这里插入图片描述

    单变量描述:输出参与分析的每个原始变量的均值、标准差和有效取值个数。
    初始解:输出未经过旋转直接计算得到的初始公因子、初始特征值和初始方差贡献率等信息。
    系数:输出初始分析变量间的相关系数矩阵。
    显著性水平:输出每个相关系数对于单侧假设检验的显著性水平。
    KMO检验和巴特利特球形检验:进行因子分析前要对数据进行KMO检验和巴特利特球形检验。简单来说KMO检验标准:KMO>0.9,非常适合;0.8<KMO<0.9,适合;0.7<KMO<0.8, 一般;0.6<KMO<0.7,不太适合;KMO<0.5,不适合。巴特利特球形检验显著值小于0.05。

  4. 在第2步页面,单击右侧提取并按图依次选择。注意此步中没有选择要提取因子数,需要经过一次分析观察碎石图选择合适的因子数。
    在这里插入图片描述

  5. 在第2步页面,单击右侧旋转并按图依次选择:
    在这里插入图片描述

  6. 在第2步页面,单击右侧得分并按图依次选择:
    在这里插入图片描述

  7. 确定因子数目:
    碎石检验(scree test)是根据碎石图来决定因素数的方法。Kaiser提出,可通过直接观察特征值的变化来决定因素数。当某个特征值较前一特征值的值出现较大的下降,而这个特征值较小,其后面的特征值变化不大,说明添加相应于该特征值的因素只能增加很少的信息,所以前几个特征值就是应抽取的公共因子数。

    从碎石图可以看出,前两个因子对应的特征值的变化较为陡峭,从第三个因子开始,特征值的变化较为平坦,因此我们应选择两个因子进行分析。(SPSS中文版翻译成了组件,实际应翻译为因子)。
    在这里插入图片描述

  8. 根据第7步确定好的因子数重新进行因子分析得出最终结果。

因子分析结果解释

  1. 数据是否适合因子分析(如图KMO>0.9,并且巴特利球形检验显著性<0.05。非常适合。):
    在这里插入图片描述

  2. 公因子方差,即共性方差。载荷矩阵 A A A的行元素平方和 h i 2 = ∑ j = 1 m a i j 2 h_{i}^{2} = \sum_{j=1}^{m}a_{ij}^{2} hi2=j=1maij2表示原始变量 x i x_{i} xi对公共因子的依赖程度。
    在这里插入图片描述
    100米(s)这个变量的公因子方差为0.95,这可以解释为我们提取的两个公共因子对100米(s)这个变量的方差贡献率为95%,即这两个公共因子能够反映出(或者说保留)100米(s)这个变量95%的信息。

  3. 总方差解释。
    在这里插入图片描述从“初始特征值”一栏中可以看出,前2个公共因子解释的累计方差达93.747%,而后面的公共因子的特征值较小,对解释原有变量的贡献越来越小,因此提取两个公共因子是合适的。
    提取载荷平方和” 一栏是在未旋转时被提取的2个公共因子的方差贡献信息,其与“初始特征值”栏的前两行取值一样。
    旋转载荷平方和”是旋转后得到的新公共因子的方差贡献信息,和未旋转的贡献信息相比,每个公共因子的方差贡献率有变化,但最终的累计方差贡献率不变

  4. 成分矩阵,即载荷矩阵 A A A
    注意:只解释旋转后的成分矩阵。因为旋转的作用使得旋转后的矩阵更容易解释。
    在这里插入图片描述
    因子1(SPSS翻译为成分)在后5个变量的绝对值取值较大;因子2在前三个变量的绝对值取值较大。因此因子1可以解释为耐力因子,因子2可以解释为爆发力因子。

  5. 成分得分系数矩阵。
    先来解释一下得分:
    因子分析是将变量表示为公共因子和特殊因子的线性组合;此外,我们可以反过来将公共因子表示为原变量的线性组合,即可得到因子得分。
    { x 1 = u 1 + a 11 f 1 + a 12 f 2 + . . . + a 1 m f m + ε 1 x 2 = u 2 + a 21 f 1 + a 22 f 2 + . . . + a 2 m f m + ε 2 ⋮ x p = u p + a p 1 f 1 + a p 2 f 2 + . . . + a p m f m + ε p \left\{\begin{matrix} x_{1} = u_{1} + a_{11}f_{1} + a_{12}f_{2} + ...+a_{1m}f_{m} + \varepsilon _{1}\\ x_{2} = u_{2} + a_{21}f_{1} + a_{22}f_{2} + ...+a_{2m}f_{m} + \varepsilon _{2}\\ \vdots \\ x_{p} = u_{p} + a_{p1}f_{1} + a_{p2}f_{2} + ...+a_{pm}f_{m} + \varepsilon _{p } \end{matrix}\right. x1=u1+a11f1+a12f2+...+a1mfm+ε1x2=u2+a21f1+a22f2+...+a2mfm+ε2xp=up+ap1f1+ap2f2+...+apmfm+εp ⇓ \Downarrow { f 1 = b 11 x 1 + b 12 x 2 + . . . + b 1 p x p f 2 = b 21 x 1 + b 22 x 2 + . . . + b 2 p x p ⋮ f m = b m 1 x 1 + b m 2 x 2 + . . . + b m p x p \left\{\begin{matrix} f_{1} = b_{11}x_{1}+b_{12}x_{2}+...+b_{1p}x_{p}\\ f_{2} = b_{21}x_{1}+b_{22}x_{2}+...+b_{2p}x_{p}\\ \vdots \\ f_{m} = b_{m1}x_{1}+b_{m2}x_{2}+...+b_{mp}x_{p} \end{matrix}\right. f1=b11x1+b12x2+...+b1pxpf2=b21x1+b22x2+...+b2pxpfm=bm1x1+bm2x2+...+bmpxp
    b i j b_{ij} bij就是第i个因子 f i f_{i} fi对应于第j个变量 x j x_{j} xj的系数。

    因子分析的结果就是由 b i j b_{ij} bij构成的 B m × p B_{m \times p} Bm×p系数矩阵。
    在这里插入图片描述

    使用因子分析结果,可以计算因子。(图中的因子是SPSS计算好的)
    在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sophon、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值