桂电数值分析实验报告五

实验目的

通过实验加深理解非线性方程求根的各个方法,掌握Matlab内置求根函数的使用方法,学会编写重点求根方法的Matlab程序。

实验原理

Matlab有内置函数直接求解方程的数值解。多项式求根命令
>> roots§
其中,输入p为多项式系数组成的向量,输出为多项式所有实数和复数根。
Matlab中还有求一般非线性方程 f ( x ) = 0 f\left( x \right) = 0 f(x)=0的实数根的命令
>> x = fzero(‘fun’,x0)
其中,输入fun为非线性函数 f ( x ) f\left( x \right) f(x),x0为根的估计值,x0也可以用含根区间 [ a , b ] \left[ {a,b} \right] [a,b],代替(注意 [ a , b ] \left[ {a,b} \right] [a,b]的函数值要求异号)。
牛顿迭代公式 x n + 1 = x n − f ( x n ) f ′ ( x n ) {x_{n + 1}} = {x_n} - {{f({x_n})} \over {f'({x_n})}} xn+1=xnf(xn)f(xn)

实验内容与步骤

  1. 求方程 x 2 + 4 sin ⁡ ( x ) = 25 {x^2} + 4\sin \left( x \right) = 25 x2+4sin(x)=25在区间 [ − 2 π , 2 π ] [ - 2\pi ,2\pi ] [2π,2π],内的所有实数根.先画图判断根的情况,再利用以上介绍的fzero法,二分法,牛顿迭代法分别求解,一个方法求一个解。
    原式子即求解 x 2 + 4 sin ⁡ x − 25 = 0 {x^2} + 4\sin x - 25 = 0 x2+4sinx25=0的根。通过画图分析,它在% [ − 2 π , 2 π ] [ - 2\pi ,2\pi ] [2π,2π]内的根落在 [ − 6 , − 4 ] [ - 6, - 4] [6,4],和 [ 4 , 6 ] [4,6] [4,6]之间
    fzero法求解它的两个根为
    x 1 = − 4 . 586052690568049 , x 2 = 5 . 318580248846235 {x_1} = {\rm{ - 4}}{\rm{.586052690568049,}}{x_2}{\rm{ = 5}}{\rm{.318580248846235}} x1=4.586052690568049,x2=5.318580248846235
    二分法求解它的两个根为
    x 1 = − 4 . 586425781250000 , x 2 = 5 . 318847656250000 {x_1} = {\rm{ - 4}}{\rm{.586425781250000,}}{x_2}{\rm{ = 5}}{\rm{.318847656250000}} x1=4.586425781250000,x2=5.318847656250000
    迭代次数 k 1 = k 2 = 11 {k_1} = {k_2} = 11 k1=k2=11
    牛顿法求解它的两个根为
    x 1 = − 4 . 586052690440867 , x 2 = 5 . 318580252569003 {x_1} = {\rm{ - 4}}{\rm{.586052690440867}},{x_2} = {\rm{5}}{\rm{.318580252569003}} x1=4.586052690440867,x2=5.318580252569003
    迭代次数 k 1 = k 2 = 2 {k_1} = {k_2} = 2 k1=k2=2
  2. 编写不动点迭代法的matlab程序,利用编写的程序求方程
    sin ⁡ x + 1 = x 2 2 \sin x + 1 = {{{x^2}} \over 2} sinx+1=2x2在区间 [ − 4 , 4 ] [ - 4,4] [4,4]内的所有实数根。
    由于将方程写为 x = arcsin ⁡ ( x 2 2 − 1 ) x = \arcsin ({{{x^2}} \over 2} - 1) x=arcsin(2x21)会超出最大迭代次数,将方程构造为 x = ± 2 sin ⁡ x + 2 x = \pm \sqrt {2\sin x + 2} x=±2sinx+2 更好一些。通过画图分析,在 [ − 4 , 4 ] [ - 4,4] [4,4]内有两个根,分别位于 [ − 2 , 0 ] [ - 2,0] [2,0] [ 0 , 2 ] [ 0,2] [0,2]之间。
    先使用fzero求解两个根分别为
    x 1 = − 0 . 774980814423043 , x 2 = 1 . 961884246410835 {x_1} = {\rm{ - 0}}{\rm{.774980814423043}},{x_2} = {\rm{1}}{\rm{.961884246410835}} x1=0.774980814423043,x2=1.961884246410835
    [ 0 , 2 ] [0,2] [0,2]内原方程是,选取初值为1,使用不动点迭代法解得
    x 1 = 1 . 96183 {x_1} = {\rm{1}}{\rm{.96183}} x1=1.96183,迭代次数 k 1 = 5 {k_1} = 5 k1=5
    [ − 2 , 0 ] [ - 2,0] [2,0]内原方程是 x = − 2 sin ⁡ x + 2 x = - \sqrt {2\sin x + 2} x=2sinx+2 ,选取初值为-1,使用不动点迭代法解得 x 2 = − 0 . 775443039377297 {x_2} = {\rm{ - 0}}{\rm{.775443039377297}} x2=0.775443039377297,迭代次数 k 2 = 76 {k_2} = 76 k2=76
    erfen.m
function [x,k]=erfen(a,b,e) 
%输入(a,b)为估计的含跟区间,e为误差.
%输出x为方程的数值解,k求解次数.
format long;
k=0;
while abs(b-a)>e  
    if f((a+b)/2)==0
        x=(a+b)/2;  
        return;
    end
    if f(a)*f((a+b)/2)<0  
        b=(a+b)/2;  
    else  
        a=(a+b)/2; 
    end   
    k=k+1;
    disp([k,a,b]);
end  
x=(a+b)/2; 

question1_erfen.m

clc
format long
ezplot('x^2+4*sin(x)-25'),grid
%[x1,k1]=erfen(-6,-4,0.001)
[x2,k2]=erfen(4,6,0.001)

question1_fzero.m

clc
format long
ezplot('x^2+4*sin(x)-25'),grid
fzero('x^2+4*sin(x)-25',[-6 -4])
fzero('x^2+4*sin(x)-25',[4 6])

question1_niudun.m

clc
format long
[x2,k2]=ntdd(2,0.0001,100)

ntdd.m

function [x,k]=ntdd(x0,e,N) 
%输入x0为估计的迭代初值,e为规定的误差,N为最大迭代次数.
%输出x数值解,k为迭代次数.
format long;
k=0;x1=x0-h(x0)/dh(x0);
while (abs(x0-x1))>e
    x0=x1;
    x1=x0-h(x0)/dh(x0);
    k=k+1;
    disp([k,x1]);
    if k>N
        return;
    end
end
x=x1;

question2_1.m

clc
syms x;
f=sqrt(2*sin(x)+2);
p0=2;
perror=0.001;
maxK=100;
ezplot('x^2/2-1-sin(x)'),grid
[x,k,Y]=FPM(f,p0,perror,maxK)

question2_2.m

format long
clc
syms x;
%f=-sqrt(2*sin(x)+2);
%f=asin((x^2)/2-1);
f=x*x-3*x+2.3-exp(x);
p0=0.3;
perror=1e-6;
maxK=100;
ezplot('x^2-3*x+2.3-exp(x)'),grid
[x,k,Y]=FPM(f,p0,perror,maxK)

FPM.m

function [p,k,Y]=FPM(f,p0,perror,maxK)
%p0表示迭代初始值
%f表示迭代公式函数
%maxK表示规定的最大迭代次数
%pererr表示允许误差
%k表示最终迭代的次数
%p表示最终迭代的值
%Y用来记录每次迭代过程的迭代值
    format long
    syms x;
    P(1)=p0;
    k=2;
    P(k)=subs(f,x,P(k-1));      %迭代
    while k<=maxK
        err=abs(P(k)-P(k-1));    %err表示相邻的迭代值的差值
        if(err<perror)
            fprintf('迭代%d次即可满足允许误差值退出\n',k-1);
            break;
        end
        k=k+1;
        P(k)=subs(f,x,P(k-1));
    end         %共迭代了k-1次
    if(k-1==maxK) 
        disp("超过最大迭代次数!");
    end
    p=P(k); 
    k=k-1;
    Y=P;
end

f.m

function y=f(x)
y=x*x+4*sin(x)-25;

df.m

function y=df(x)
y=2*x+4*cos(x);
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值