自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 icoding 排序 数组合并

数组合并假设有 n 个长度为 k 的已排好序(升序)的数组,请设计数据结构和算法,将这 n 个数组合并到一个数组,且各元素按升序排列。即实现函数: void merge_arrays(const int* arr, int n, int k, int* output);其中 arr 为按行优先保存的 n 个长度都为 k 的数组,output 为合并后的按升序排列的数组,大小为 n×k。时间要求(评分规则),当 n > k 时:满分:时间复杂度不超过 O(n×k×log(n))

2021-06-22 20:32:47 407

原创 icoding 错误尝试

数组合并假设有 n 个长度为 k 的已排好序(升序)的数组,请设计数据结构和算法,将这 n 个数组合并到一个数组,且各元素按升序排列。即实现函数: void merge_arrays(const int* arr, int n, int k, int* output);其中 arr 为按行优先保存的 n 个长度都为 k 的数组,output 为合并后的按升序排列的数组,大小为 n×k。时间要求(评分规则),当 n > k 时:满分:时间复杂度不超过 O(n×k×log(n))

2021-06-22 18:10:35 157

原创 icoding 排序 堆化

堆化二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。“最小堆”的定义如下:typedef struct _otherInfo{ int i; int j;}OtherInfo;typedef struct _minHeapNode{

2021-06-21 19:48:00 490

原创 icoding 排序 堆元素插入

堆元素插入二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。“最小堆”的定义如下:typedef struct _otherInfo{ int i; int j;}OtherInfo;typedef struct _minHeapNode

2021-06-21 19:45:43 750

原创 icoding 排序 堆初始化

堆初始化二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。“最小堆”的定义如下:typedef struct _otherInfo{ int i; int j;}OtherInfo;typedef struct _minHeapNode{

2021-06-21 19:42:39 335

原创 icoding 排序 堆辅助函数

堆化二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。“最小堆”的定义如下:typedef struct _otherInfo{ int i; int j;}OtherInfo;typedef struct _minHeapNode{

2021-06-21 19:39:34 498

原创 icoding 查找-哈希表添加

哈希表添加哈希表(Hash Table,也叫散列表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做哈希函数,存放记录的数组称做哈希表。哈希表相关定义如下:typedef enum{ HASH_OK, HASH_ERROR, HASH_ADDED, HASH_REPLACED_VALUE, HASH_ALREADY_ADDED,

2021-06-10 11:53:44 876 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除