2021-04-04

动态规划

动态规划算法通常用于求解具有某种最优性质的问题。例如(最大小,最多少)
在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。

其中具有的固定名词:

阶段
把整个复杂的问题分解成一个个的阶段 ,要是每个阶段都有最优解,那么整个问题就会有最优解;此处的每个阶段的最优解和贪心算法不同 贪心算法是按照统一的不变的标准来求最优解;动态规划是按照余下的状态(阶段解)最优
来确定状态转移方程;从后往前推 一步步求解;

最优子结构

一个最优子结构具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的状态最优;例如 要求最大子序列;那么就假设以i个数结束 然后让前i-1数组成的子序列最大 那么再加上第i个数就是前i个数的最大子序列;

状态

意思是我们所要求的东西;每个阶段的开始或者结束时的值;

状态转移方程*
当进行到某个阶段的开始是 或者结束时 即一个阶段和下一个阶段的分界点时 所要做出的对状态的操作
注意 整个问题 状态转移方程一般只有一个

基本思想

1.先将问题分成几个阶段 (几种情况) 确定该状态我们想要的值
2. 通过状态转移方程来确定下一个状态(情况)的值 (通过循环来遍历所有的状态)
3. 这个时候需要一个能记录该状态值的容器 (一般是数组)下标是状态编号;内容是状态值; 把所有状态都遍历一遍后,把值存入数组后;
4. 遍历一遍数组 ,把我们要的最值输出 ;

例题

子序列问题

最大连续子序列
给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。

思路:设以第k个元素结束得到的最长子序列长度为dp[k];(将状态值存入数组)
状态变化方程为 dp【k】=max【dp【k-1】+a【k】】,0】
将每个状态的最优值遍历出来 然后最优中求最优;思路是从后往前推
还有一种思路``从前往后推;

for(int i=0;i<n;i++)
      cin>>a[i];
      int sum=a[0],ans=a[0];   //sum为状态数组  ans为答案
      for(int i=1;i<n;i++)//设以第k个数子链结束;从1开始
 
      {
             if(sum>=0)      如果a[i]>0,sum=a[1]
                            如果a[2]<0   所以以第2个元素结尾的子列最大就a[1]
                            那么对第三个元素结尾的最大子列就分两种情况
                            1 a[1]>a[2]   sum=a[1]+a[2]
                            2 a[1] <a[2]  sum=0 意思是从0开始从新记录 
               {   
                  sum+=a[i];  
                  
             }
             else
             {
                   sum=a[i];
                  
             }

            if(sum>ans){    //每一次都比较一次  把最大的值保留下来;
                  ans=sum;
           }

公共子序列

输入 abcfbc abfcab 输出 4
输入programming contest 输出 2

即比较两个字符串的元素相同个数 但是 是有顺序的比较
例如qwe wqe
输出是2 而不是3
qwe中a[1]=q,
wqe中z[1]=w z[2]=q
所以把q放入公共链c 中,
即c[1]=q;
但是a[2]=w ;z[1]=w 却不能把w放到c[2], 因为c[1]=q,c[2]=w;这与wqe的顺序不符;

for(int i=1;i<=a.length();i++)       //值得注意的地方  字符串是以下标0开始的
      for(int j=1;j<=b.length();j++)   //所以 第一重是元素个数;
      
      {                              //第二重是元素下标加1
      if(a[i-1]==b[j-1])
      dp[i][j]=dp[i-1][j-1]+1;     //dp[i][j]意思是a[i]结束 b【j】结束的两个链的公共链 
      else
            dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

      }  //因为a[i]和b[j]越靠后  可能重叠的公共链就越长,所以输出最长; 
           cout<<dp[a.length()][b.length()]<<endl;  
      
     

dp【10000】【10000】的初始值都是0
状态转移方程

  if(a[i-1]==b[j-1])
  dp[i][j]=dp[i-1][j-1]+1;
  else
        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

意思是(1)如果am-1 == bn-1,则当前最长公共子序列为 "a0, a1, …, am-2"与"b0, b1, …, bn-2"的最长公共子序列与am-1(bn-1)所组成。
长度为"a0, a1, …, am-2"与"b0, b1, …, bn-2"的最长公共子序列的长度+1。

(2)如果am-1 != bn-1,则最长公共子序列为max("a0, a1, …, am-2"与"b0, b1, …, bn-1"的公共子序列,"a0, a1, …, am-1"与"b0, b1, …, bn-2"的公共子序列)

说实话 感觉动态规划的题关键是找状态转移方程
就目前所阅读过的题来说 大体方向是从后往前推
并且注意所用词 子段 和子序列 是不同的
子段是连续的不间断的
子序列是有序的 可间断的可连续的

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值