动态规划经典题目——最大连续子序列之和

一、题目

       给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …, Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序中元素和最大的一个, 例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。

二、解题思路

     动态规划解题思路可详见另一篇文章

①定义状态

为了简单起见,我们可以定义dp[i]来表示以a[i]作为末尾的连续序列之和。其中数组a[]表示整数的序列。所以我们求的连续子序中元素和最大的一个数是数组dp中的最大数。

②定义状态转移方程

大家知道动态规划满足无后向性,即:每个阶段的决策仅受之前决策的影响,但是不影响之后各阶段的决策。所以我们可以从后往前推出状态转移方程,我们可以考虑dp[i]与dp[i-1]的关系,设连续序列中的元素保存在数组a[]中,是否一定dp[i] = dp[i-1] +a[i]?答案是不一定的,我们考虑一下只有dp[i-1] + a[i] > a[i]时才可能有dp[i] = dp[i-1] +a[i]等式成立,否则dp[i]可以从a[i]重新算起,这样我们可以得到状态转移方程:

                           dp[i] = max(dp[i-1] + a[i] , a[i])

从公式中我们可以看出为什么dp[i]来表示以a[i]作为末尾的连续序列之和。

③确定边界

由状态定义我们可以得出当i = 0时,dp[0] = 0;

三、代码编写

#include <stdio.h>
#include <stdlib.h>

#define N 7
#define max(a,b) ((a>b)?a:b)

int main()
{
    int a[N] = {0,-2,11,-4,13,-5,-2};
    //保存最大连续子序列之和
    int maxResult = 0;
    //dp[i]来表示以a[i]作为末尾的连续序列之和
    int dp[N]={0};
    //核心算法
    int i=1;
    for(i;i < N;i++){
        dp[i] = max((dp[i-1]+a[i]),a[i]);
        if(maxResult < dp[i]){
            maxResult = dp[i];
        }
    }
    printf("最大连续子序列之和:%d ",maxResult);

    return 0;
}

 四、运行结果

五、总结

动态规划需要满足无后向性,可用逆向思维推出状态转化方程,动态规划解题方法可详见另一篇文章

  • 1
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值