树
在了解二叉树前,先来了解树,树是一种非线性的数据结构,它是由 n (n >= 0) 个有限结点组成一个具有层次关系的集合。因为它的结构像一颗倒挂的树,所以把它叫做树,树具有以下特点:
- 有一个特殊的结点,称为根结点,根结点没有前驱结点。
- 除根结点外,其余结点被分成 M(M > 0) 个互不相交的集合 T1、T2、…、Tm,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继。
- 树是递归定义的。
结构如下所示:
注意: 树形结构中,子树之间不能有交集,否则就不是树形结构,例如下面的都不是树形结构:
只有满足以下特征的树才是树型结构:
- 子树是不相交的。
- 除了根结点外,每个节点有且只有一个父节点。
- 一颗 N 个节点的数,共有 N+1 条边。
相关概念
二叉树
一棵二叉树是结点的一个有限集合,该集合:或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。例如:
从上图可以看出:二叉树没有度大于 2 的结点,二叉树的子树有左右之分,不能颠倒次序,所以二叉树是一棵有序树。
注意:对于任意的二叉树都由以下几种情况复合而成的:
满二叉树和完全二叉树
满二叉树和完全二叉树是两种特殊的二叉树。
满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为 K,且结点总数是 2k -1,则它就是满二叉树。
完全二叉树: 完全二叉树是效率很高的数据结构,由满二叉树引出来的。对于深度为 K 的,有 n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 0 至 n-1 的结点一一对应时称之为完全二叉树。 要注意满二叉树是一种特殊的完全二叉树。
二叉树的性质
- 若规定根结点层数为1,则一颗非空二叉树的第 i 层上最多有 2i-1 (i > 0) 个节点。
- 若规定只有根结点的二叉树的深度为 1,则深度为 K 的二叉树的最大结点数为 2K -1 (k >= 0)。
- 由上面的结论又有, 具有 n 个结点的完全二叉树的深度 k 为 log₂(n+1) 上取整。
- 对任何一棵二叉树,如果其叶结点个数为 n0, 度为 2 的非叶结点个数为 n2,则有 n0=n2+1。
- 对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从 0 开始编号,则对于序号为 i 的结点有:
若 i>0,双亲序号:(i-1)/2;i=0,i 为根结点编号,无双亲结点
若 2i+1<n,左孩子序号:2i+1,否则无左孩子
若 2i+2<n,右孩子序号:2i+2,否则无右孩子
练习:
二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
二叉树的链式存储是通过若干个结点引用起来的,常见的表现方式有二叉和三叉表现方式,具体如下:
二叉表现方式:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
三叉表现方式:
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
二叉树的遍历
遍历就是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。 访问结点所做的操作依赖于具体的应用问题 (比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算的基础。
二叉树的遍历主要有前序遍历,中序遍历,后序遍历和层序遍历。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果 N 代表根节点,L 代表根节点的左子树,R 代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
前序遍历: 又叫先序遍历,先访问根结点,再访问左子树,然后右子树 (根左右)。
中序遍历: 根的左子树 —> 根节点 —>根的右子树 (左根右)。
后序遍历: 根的左子树 —> 根的右子树 —>根节点 (左右根)。
例如:
而层序遍历就相对简单了:
几道遍历练习题:
遍历代码实现
//前序遍历 根左右
public void preOrder(TreeNode root) {
if (root == null) {
//如果没有根结点就返回
return;
}
//有根结点就打印
System.out.print(root.val + " ");
//然后遍历左子树
preOrder(root.left);
//再遍历右子树
preOrder(root.right);
}
//中序遍历 左根右
public void inOrder(TreeNode root) {
if (root == null) {
return;
}
inOrder(root.left);
System.out.print(root.val + " ");
inOrder(root.right);
}
//后序遍历 左右根
public void postOrder(TreeNode root) {
if (root == null) {
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.print(root.val + " ");
}
二叉树的基本操作
获取树中节点的个数:
//节点个数等于左子树节点个数 加上 右节点个数 再加上根结点
public int size(TreeNode root) {
if (root == null) {
return 0;
}
//左子树节点个数
int leftCount = size(root.left);
//右子树节点个数
int rightCount = size(root.right);
return leftCount + rightCount + 1;
}
获取叶子节点的个数:
//叶子结点总数等于左子树的叶子结点 加上 右子树的叶子结点
public int getLeafNodeCount(TreeNode root) {
if (root == null) {
return 0;
}
//如果左孩子与右孩子都为空,就是叶子结点
if (root.left == null && root.right == null) {
return 1;
}
int leftCount = getLeafNodeCount(root.left);
int rightCount = getLeafNodeCount(root.right);
return leftCount + rightCount;
}
获取第K层节点的个数:
//求第K层结点个数,就是求 k-1 层结点个数...
public int getKLevelNodeCount(TreeNode root, int k) {
if (root == null) {
return 0;
}
//第一层只有一个
if (k == 1) {
return 1;
}
int leftCount = getKLevelNodeCount(root.left, k - 1);
int rightCount = getKLevelNodeCount(root.right, k - 1);
//返回左子树的第K层和右子树的第K层
return leftCount + rightCount;
}
获取二叉树的高度:
public int getHeight(TreeNode root) {
if (root == null) {
return 0;
}
//求树的高度就是
//先求出左子树的高度和右子树的高度,谁高就返回谁的高度 最后在加上根结点的高度1,
int leftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
检测值为 val 的元素是否存在:
public TreeNode find(TreeNode root, int val) {
if (root == null) {
return null;
}
//如果值等于val,返回
if (root.val == val) {
return root;
}
//遍历左子树,接收返回值
TreeNode leftTree = find(root.left, val);
//不等于null,说明找到val了
if (leftTree != null) {
return leftTree;
}
//到这里说明左子树没有val,遍历右子树并接收返回值
TreeNode rightTree = find(root.right, val);
if (rightTree != null) {
return rightTree;
}
return null;
}