Pytorch安装缓慢,不使用镜像源加速下载(其他国内、国外资源也适用)

在安装Pytorch时,若使用官网下载路径十分缓慢,一般情况下大家都会使用国内镜像进行下载。使用镜像源方式安装的人比较多,但是也存在安装不了的情况,比如镜像源中没有相关的安装包。

如下,使用Pytorch官网下载速度十分慢,要三个多小时。

而想要切换为其他国内镜像时,找不到需要安装的文件。 

这里我安装Pytorch使用了另外一种方案,就是下载它的*.whl文件。Pytorch相关资源链接如下:download.pytorch.org/whl/torch/。进入链接后寻找自己需要的Pytorch文件。CPU版本的Cuda在torch版本号的“+”后面显示“cpu”,若是GPU版本的Cuda则在“+”后面显示“cu”。

直接点击要下载的文件会发现,下载速度与使用命令行速度基本一致。

为了加速,我在这里使用了下载工具IDM,全称是Internet Download Manager,是一种多线程下载工具,可以提升下载文件的速度。IDM链接如下:https://pan.baidu.com/s/1F2M9DHJsboK4eFc-h7HWQw?pwd=hn5b 注意:仅供学习,请勿使用于不合规的用途,否则后果自负。

下载完成后双击安装程序即可,安装完成后,在打开浏览器时会自动添加浏览器扩展,若没有根据说明书添加。

将鼠标移动到需要下载的资源上面,右键选择使用IDM下载或者是复制链接到IDM下载。

使用此方法下载速度能达到4mb/s,相较于原来的263kb/s提升了16倍(16个线程) 。

下载完成后,通过如下命令行安装即可:

pip install 文件路径+文件名

conda install 文件路径+文件名

二选一即可实现安装。 

但是,这个方法只安装了torch,并没有安装torchvisiontorchaudio,由于我们将最大的torch安装了,这两部分可以直接通过pip install 的方法安装即可。

注意:在安装时一定要指定版本,否则会出现版本不匹配的报错。

比如,我需要安装的pytorch在官网获得的命令如下:

pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html

那么我就需要在需要安装的环境中或者是在conda中通过命令安装。

pip install torchvision==0.11.2

pip install torchaudio==0.10.1

### 加速 PyTorch 下载或单独下载 PyTorch 的方法 #### 单独下载 PyTorch 为了单独安装 PyTorch,可以访问官方的 PyTorch 安装页面并根据操作系统、CUDA 版本和其他需求选择合适的配置。通过命令行工具如 `pip` 或者 Anaconda 来完成安装是最常见的做法。 对于使用 pip 进行安装的情况: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 上述命令适用于 CUDA 11.3 用户;如果需要 GPU 支持,则可以从 URL 中移除 `--extra-index-url` 参数来获取仅 CPU 版本[^1]。 #### 使用镜像源加速下载 在中国大陆地区或其他网络条件佳的地方,可以通过指定国内镜像站点的方式来加快包管理器(比如 pip)下载速度。例如阿里云提供了公共的 Python 镜像服务,能够有效提升依赖库的下载速率。 针对 pip 用户来说,在原有基础上增加 `-i` 参数指向特定镜像地址即可实现加速效果: ```bash pip install torch torchvision torchaudio -i https://mirrors.aliyun.com/pypi/simple/ ``` 另外一种方式是设置环境变量 PIP_INDEX_URL 指向所需镜像站,这样就必每次都手动输入完整的安装指令了。 #### 利用 Conda 渠道优化安装过程 除了 pip 外,Anaconda 发行版自带 conda 包管理系统同样支持快速部署 PyTorch 环境。Conda 仅有自己的默认频道,还允许添加其他社区维护的良好渠道以获得更广泛的支持和更快的速度。 创建一个新的 conda 虚拟环境并将 pytorch 添加进去的例子如下所示: ```bash conda create --name myenv python=3.8 conda activate myenv conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 这里选择了版本号为 3.8 的 Python 和对应于 CUDA 11.3 的 PyTorch 构建。当然也可以调整这些参数匹配个人计算机的具体情况[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值