CIFAR10数据集预处理的两种方式

(1)方法1:从CIFAR-10数据集中提取图像,并将它们按类别保存为PNG格式的文件。

目标目录结构如图:

import numpy as np

import pickle

import os

from torchvision import datasets

from imageio import imwrite

# 数据集放置路径 cifar10/cifar-10-batches-py

data_save_pth = "./"

train_pth = os.path.join(data_save_pth, "train")

test_pth = os.path.join(data_save_pth, "test")

# 创建必要的目录

def create_dir(path):

    if not os.path.exists(path):

        os.makedirs(path)

create_dir(train_pth)

create_dir(test_pth)

# 解压路径

data_dir = os.path.join(data_save_pth, "cifar-10-batches-py")

# 数据集下载</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值