
深度学习
才疏学浅,努力修炼
勤练出重锤,唯快而不破
展开
-
查看cuda和cudnn版本
请注意,由于版本的更新,某些方法可能会失效。因此,建议直接访问官方文档或官方网站查询最新的获取版本信息的正确方法。原创 2024-02-26 08:52:41 · 3667 阅读 · 0 评论 -
用于表格检测和结构识别的深度学习研究综述-Deep learning for table detection and structurerecognition: A survey
TableSegNet使用较浅的路径来发现高分辨率的表格位置,而使用较深的路径来检测低分辨率的表格区域,将发现的区域分割成单独的表格。为了提高网络学习表格空间排列方面的能力,作者将退化纳入了网络的核心,并创建了一个简单的FPN网络来提高模型的有效性。Y Li[《A gan-based feature generator for table detection》]提供了一种新的网络来生成表格文本的布局元素,并提高规则较少的表格的识别性能。后来,随着更复杂的架构的发展,更多的工作被放到表列和整体结构识别中。原创 2024-01-27 16:30:21 · 1982 阅读 · 0 评论 -
labelimg标注闪退报错:TypeError: arguments did not match any overloaded call
依赖包的版本不匹配导致的,labelimg安装环境的python版本不能超过3.9版本,所以解决方案是创建一个3.9及其一下的版本来安装labelimg。可以正常标注,闪退现象消失。原创 2023-12-25 09:40:45 · 2932 阅读 · 0 评论 -
ERROR: Could not find a version that satisfies the requirement matplotlib>=3.2.2 (from versions: non
在同一个地方屡次中坑,下载第三方的库一定要关闭代理软件。解决方法:关闭代理软件。原创 2023-12-24 18:20:34 · 1653 阅读 · 2 评论 -
Rebuild the library with Windows, GTK+ 2.x or Carbon support. If you are on Ubuntu or Debian, instal
opencv-python、opencv-contrib-python和opencv-python-headless版本不一致导致的。重新安装opencv-python、opencv-contrib-python。paddleocr要求安装4.6.0.66版本,按照要求安装指定版本即可。原创 2023-12-21 13:24:40 · 803 阅读 · 0 评论 -
安装easyocr报错:ERROR: Could not build wheels for opencv-python-headless, which is required to install p
说明是 opencv-python-headless安装出现了问题,直接在线安装依然会报错。安装成功opencv-python-headless之后再安装 easyocr 即可。去下面的官网,离线下载opencv-python-headless。官网下载很慢,我已经上传了字面可以免费下载。原创 2023-12-21 11:28:27 · 1463 阅读 · 0 评论 -
运行报错:Importing the numpy C-extensions failed.
解决方法是卸载重新安装。原创 2023-12-20 10:13:09 · 2112 阅读 · 0 评论 -
numpy安装ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。: ‘C:\\Users\\MyPC\\.c
【代码】安装相关问题集锦。原创 2023-12-20 09:58:45 · 1043 阅读 · 0 评论 -
安装paddleOCR 时ERROR: Failed building wheel for PyMuPDF
安装paddleocr将 PyMuPDF指定为1.19.0,解决问题。PaddleOCR在安装这块不够人性化,希望越来越好吧。原创 2023-12-20 09:12:38 · 2994 阅读 · 0 评论 -
深度学习基本概念
令输入信号的高和宽为6,卷积核的高和宽 为3时,左上方的计算过程为(0×0)+(1×1)+(0×0)+(1×1)+(0×0)+ (0×1)+(0×0)+(0×1)+(0×0)=2,将卷积核进行图1.8所示的横纵向移动,重复对应位置相乘并求和的操作,得到剩下的三个值为3,1, 2。小卷积将会导致卷积层看到的输入范围变小 了,比如对于人脸图像而言,可能3×3的大小内所有像素的颜色都是一样的,卷积核看到的也就是一个单纯的色块,而不包含有助于分类 的信息。图中选用的池化窗口大小为2×2,步长为2。原创 2023-12-13 10:05:17 · 626 阅读 · 0 评论 -
argmax(x,axis)
假设我们有一个形状为(2, 3, 4)的三维张量x,表示2个样本的3行4列的特征矩阵。应用argmax(x, axis=2)后,我们得到的结果是一个形状为(2, 3)的二维张量,其中每个元素表示对应样本的每一行中最大值的索引。在这个例子中,每个样本的每一行中最大值的索引都是3。如果axis=2,那么argmax(x, axis=2)将在给定张量x的第二个轴(即沿着列的方向)上找到最大值的索引。具体来说,argmax(x, axis) 的作用是找到张量 x 在指定轴上的最大值,并返回对应的索引。原创 2023-12-01 21:50:22 · 189 阅读 · 0 评论