多元统计分析及R语言建模(第四版)--第四章多元相关与回归分析及R使用课后习题

该内容涉及多个回归分析案例,包括简单的线性回归和多元线性回归。通过相关系数、决定系数、方差分析和残差图等统计方法,探讨了加班时间与新保单数目、广告预算与销售代理数目、GPA与起始工资以及货运总量与工业产值、农业产值、居民非商品支出之间的关系。分析显示,这些变量间存在显著的线性相关性,并建立了相应的回归方程进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.一家保险公司想了解其总公司营业部加班时间与签发的新保单数目之间的关系,经过10周时间,收集了每周加班工作时间y(小时)和签发的新保单数目x(张)。

 

ee4.1=read.table("clipboard",header = T)
ee4.1
plot(ee4.1,main = '散点图', xlab = '保险单数',ylab = '工作时间')
cor(ee4.1)
lm4.1 <- lm(ee4.1)
lm4.1
square_sigma <- t(e4.1)/(10-1-1)
square_sigma
y = c(3.5,1,4,2,1,3,4.5,1.5,3,5)
x = c(825,215,1070,550,480,920,1350,325,670,1215)
y_hat <- 46.15 + 251.17*y
s <- t(y_hat - x)%*%(y_hat - x)/(10-1-1)
s
(summary(lm4.1) $ s)^2
SR <- t(y_hat - mean(x))%*%(y_hat - mean(x))
ST <- t(x - mean(x))%*%(x - mean(x))
s_R <- SR/ST
s_R
(summary(lm4.1) $ r.squared)
anova(lm4.1)
res <- residuals(lm4.1)
res
plot(y,res,main='残差散点图',xlab='每周签发的新保单数目',ylab='残差')
plot(lm4.1)
lm4.1_1 <- lm(x ~ y,data = ee4.1)
predict(lm4.1_1,newdata = data.frame(y = 1000))
lm4.1_1 <- lm(y ~ x,data = ee4.1)
predict(lm4.1_1,newdata = data.frame(x = 1000))

(1)绘制散点图,并以此判断x与y之间是否大致呈线性关系。

(2)计算x与y的相关系数。

(3)用最小二乘估计法求回归方程。

x = 251.17y + 46.15

(4)求随机误差ε的方差σ^2的估计值。

(5)计算x与y的决定系数。 

 

 (6)对回归方程作方差分析。

P<0.05,x与y间存在直线回归关系 。

(7)对回归方程作残差图并做一些分析。

 

(8)计算x0 = 1000(张)需要的加班时间是多少? 

 

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值