1.一家保险公司想了解其总公司营业部加班时间与签发的新保单数目之间的关系,经过10周时间,收集了每周加班工作时间y(小时)和签发的新保单数目x(张)。
ee4.1=read.table("clipboard",header = T)
ee4.1
plot(ee4.1,main = '散点图', xlab = '保险单数',ylab = '工作时间')
cor(ee4.1)
lm4.1 <- lm(ee4.1)
lm4.1
square_sigma <- t(e4.1)/(10-1-1)
square_sigma
y = c(3.5,1,4,2,1,3,4.5,1.5,3,5)
x = c(825,215,1070,550,480,920,1350,325,670,1215)
y_hat <- 46.15 + 251.17*y
s <- t(y_hat - x)%*%(y_hat - x)/(10-1-1)
s
(summary(lm4.1) $ s)^2
SR <- t(y_hat - mean(x))%*%(y_hat - mean(x))
ST <- t(x - mean(x))%*%(x - mean(x))
s_R <- SR/ST
s_R
(summary(lm4.1) $ r.squared)
anova(lm4.1)
res <- residuals(lm4.1)
res
plot(y,res,main='残差散点图',xlab='每周签发的新保单数目',ylab='残差')
plot(lm4.1)
lm4.1_1 <- lm(x ~ y,data = ee4.1)
predict(lm4.1_1,newdata = data.frame(y = 1000))
lm4.1_1 <- lm(y ~ x,data = ee4.1)
predict(lm4.1_1,newdata = data.frame(x = 1000))
(1)绘制散点图,并以此判断x与y之间是否大致呈线性关系。
(2)计算x与y的相关系数。
(3)用最小二乘估计法求回归方程。
x = 251.17y + 46.15
(4)求随机误差ε的方差σ^2的估计值。
(5)计算x与y的决定系数。
(6)对回归方程作方差分析。
P<0.05,x与y间存在直线回归关系 。
(7)对回归方程作残差图并做一些分析。
(8)计算x0 = 1000(张)需要的加班时间是多少?