多元统计分析及R语言建模(第四版)--第三章多元数据的直观表示及R使用课后习题

本文探讨了雷达图与星图的区别,指出星图在容纳更多样本点上的优势,但可能不利于直观比较。通过R语言的aplpack、TeachingDemos和andrews库,展示了如何绘制和分析2004年广东省各市高新技术产品的数据,包括条形图、箱线图和多元图示方法,如Andrews曲线,提供了对数据的直观理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.讨论雷达图与星相图的区别,并编制绘制的R语言函数。

星图与雷达图的原理相同。实际上,星图只不过是将样本点分而置之的雷达图,区别就是它能够容纳的样本点比雷达图要大,缺点就是它不能对各个变量进行直观的比较。

2.表3-2是2004年广东省各市高新技术产品情况。试对资料按照本章介绍的多元图示方法做直观分析。

install.packages('aplpack',repos="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
library(aplpack)
install.packages('TeachingDemos',repos="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
library(TeachingDemos)
install.packages('andrews',repos="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
library(andrews)
ee3.2 = read.table("clipboard",header = T)
ee3.2
barplot(apply(ee3.2,2, mean))
msa.X <- function(df){                    
+     X = df[,-1]                           
+     rownames(X) = df[,1]                  
+     X                                     
+ } 
d3.2 = msa.X(ee3.2)
d3.2
barplot(apply(d3.2,2, mean))
barplot(apply(d3.2,1,mean),las &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值