14、动态规划

什么是动态规划

从数学的视角来看,动态规划是一种运筹学方法,是在多轮决策过程中的最优方法。

那么,什么是多轮决策呢?其实多轮决策的每一轮都可以看作是一个子问题。从分治法的视角来看,每个子问题必须相互独立。但在多轮决策中,这个假设显然不成立。这也是动态规划方法产生的原因之一。

最短路径问题

接下来。我们来看一个非常典型的例子,最短路径问题。如下图所示:

每个结点是一个位置,每条边是两个位置之间的距离。现在需要求解出一条由 A 到 G 的最短距离是多少。

不难发现,我们需要求解的路线是由 A 到 G,这就意味着 A 要先到 B,再到 C,再到 D,再到 E,再到 F。每一轮都需要做不同的决策,而每次的决策又依赖上一轮决策的结果。

例如,做 D2 -> E 的决策时,D2 -> E2 的距离为 1,最短。但这轮的决策,基于的假设是从 D2 出发,这就意味着前面一轮的决策结果是 D2。由此可见,相邻两轮的决策结果并不是独立的。

动态规划还有一个重要概念叫作状态。在这个例子中,状态是个变量,而且受决策动作的影响。例如,第一轮决策的状态是 S1,可选的值是 A,第二轮决策的状态是 S2,可选的值就是 B1 和 B2。以此类推。

动态规划的基本方法

动态规划问题之所以难,是因为动态规划的解题方法并没有那么标准化,它需要你因题而异,仔细分析问题并寻找解决方案。虽然动态规划问题没有标准化的解题方法,但它有一些宏观层面通用的方法论

下面的 k 表示多轮决策的第 k 轮

1. 分阶段,将原问题划分成几个子问题。一个子问题就是多轮决策的一个阶段,它们可以是不满足独立性的。

2. 找状态,选择合适的状态变量$S_k$。它需要具备描述多轮决策过程的演变,更像是决策可能的结果。

3. 做决策,确定决策变量$u_k$。每一轮的决策就是每一轮可能的决策动作,例如 D2 的可能的决策动作是 D2 -> E2 和 D2 -> E3。

4. 状态转移方程。这个步骤是动态规划最重要的核心,即$s_{k+1}=u_k(s_k)$ 。

5. 定目标。写出代表多轮决策目标的指标函数$V{k,n}$。

6. 寻找终止条件

了解了方法论、状态、多轮决策之后,我们再补充一些动态规划的基本概念。

  • 策略,每轮的动作是决策,多轮决策合在一起常常被称为策略。

  • 策略集合,由于每轮的决策动作都是一个变量,这就导致合在一起的策略也是一个变量。我们通常会称所有可能的策略为策略集合。因此,动态规划的目标,也可以说是从策略集合中,找到最优的那个策略。

一般而言,具有如下几个特征的问题,可以采用动态规划求解

  1. 最优子结构。它的含义是,原问题的最优解所包括的子问题的解也是最优的。例如,某个策略使得 A 到 G 是最优的。假设它途径了 Fi,那么它从 A 到 Fi 也一定是最优的。

  2. 无后效性。某阶段的决策,无法影响先前的状态。可以理解为今天的动作改变不了历史。

  3. 有重叠子问题。也就是,子问题之间不独立。这个性质是动态规划区别于分治法的条件。如果原问题不满足这个特征,也是可以用动态规划求解的,无非就是杀鸡用了宰牛刀。

动态规划的案例

我们以最短路径问题再来看看动态规划的求解方法。在这个问题中,你可以采用最暴力的方法,那就是把所有的可能路径都遍历一遍,去看哪个结果的路径最短的。如果采用动态规划方法,那么我们按照方法论来执行。

动态规划的求解方法

1.分阶段

很显然,从 A 到 G,可以拆分为 A -> B、B -> C、C -> D、D -> E、E -> F、F -> G,6 个阶段。

2. 找状态

第一轮的状态$S_1=A$,第二轮$S_2={B_1,B_2}$,第三轮$S_3={C_1,C_2,C_3}$,第四轮$S_4={D_1,D_2,D_3}$,第五轮$S_5={E_1,E_2,E_3}$,第六轮$S_6={F_1,F_2}$,第七轮$S_7={G}$。

3. 做决策

决策变量就是上面图中的每条边。我们以第四轮决策 D -> E 为例来看,可以得到$u_4(D_1)$,$u_4(D_2)$,$u_4(D_3)$。其中$u_4(D_1)$的可能结果是 $E_1$ 和$E_2$。

4. 写出状态转移方程

在这里,就是 $s_{k+1}=u_k(s_k)$。

5. 定目标

别忘了,我们的目标是总距离最短。我们定义$d_k(S_k,u_k)$ 是在$S_k$时,选择$u_k$动作的距离。例如,$d_5(E_1,F_1)=3$。那么此时 n = 7,则有,

$$
V_{k,7}(S_1=A,S_7=G)=\sum_{k=1}^{7}d_k(S_k,u_k)
$$

就是最终要优化的目标。

6. 寻找终止条件

  • 很显然,这里的起止条件分别是,$S_1=A$和 $S_7=G$。

  • 接下来,我们把所有的已知条件,凝练为上面的符号之后,只需要借助最优子结构,就可以把问题解决了。最优子结构的含义是,原问题的最优解所包括的子问题的解也是最优的。

  • 套用在这个例子的含义就是,如果 A -> ... -> F1 -> G 是全局 A 到 G 最优的路径,那么此处 A -> ... -> F1 也是 A 到 F1 的最优路径。

  • 因此,此时的优化目标 $ min V{k,7}(S_1=A,S_7=G)$,等价于 $min {V{k,6}(S_1=A,S_6=F_1)+4,V_{K,6}(S_1=A,S_6=F_2)+3}$。

  • 此时,优化目标的含义为,从 A 到 G 的最短路径,是 A 到 F1 到 G 的路径和 A 到 F2 到 G 的路径中更短的那个。

  • 同样的,对于上面式子中,$V{k,6}(S_1=A,S_6=F_1)$和$V{k,6}(S_1=A,S_6=F_2)$,仍然可以递归地使用上面的分析方法。

计算过程详解

好了,为了让大家清晰地看到结果,我们给出详细的计算过程。为了书写简单,我们把函数$V_{k,7}(S_1=A,S_7=G)$精简为$V_7(G)$,含义为经过了 6 轮决策后,状态到达 G 后所使用的距离。我们把图片复制到这里一份,方便大家不用上下切换。

我们的优化目标为$min V_{k,7}(S_1=A,S_7=G)$,因此精简后原问题为,$minV_7(G)$。

代码实现过程

接下来,我们尝试用代码来实现上面的计算过程。对于输入的图,可以采用一个 m x m 的二维数组来保存。在这个二维数组里,m 等于全部的结点数,也就是结点与结点的关系图。而数组每个元素的数值,定义为结点到结点需要的距离。

在本例中,可以定义输入矩阵 m(空白处为0),如下图所示:

代码如下:

public class testpath {
    public static int minPath1(int[][] matrix) {
        return process1(matrix, matrix[0].length-1);
    }
    // 递归
    public static int process1(int[][] matrix, int i) {
        // 到达A退出递归
        if (i == 0) {
            return 0;
        }
        // 状态转移
        else{
            int distance = 999;
            for(int j=0; j<i; j++){
                if(matrix[j][i]!=0){
                    int d_tmp = matrix[j][i] + process1(matrix, j);
                    if (d_tmp < distance){
                        distance = d_tmp;
                    }
                }
            }
            return distance;
        }
    }
    public static void main(String[] args) {
        int[][] m = {{0,5,3,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,1,3,6,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,8,7,6,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,6,8,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,3,5,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,8,4,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,3,5,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3}};
        System.out.println(minPath1(m));
    }
}

代码解读

代码的 27 行是主函数,在代码中定义了二维数组 m,对应于输入的距离图。m 是 15 x 16 维的,我们忽略了最后一行的全 0(即使输入也不会影响结果)。

然后调用函数 minPath1。在第 2 到第 4 行,它的内部又调用了 process1(matrix, matrix[0].length-1)。在这里,matrix[0].length-1 的值是 15,表示的含义是 matrix 数组的第 16 列(G)是目的地。

接着进入 process1 函数中。我们知道在动态规划的过程中,是从后往前不断地推进结果,这就是状态转移的过程。对应代码中的 13-24 行:

  • 第 15 行开始循环,j 变量是纵向的循环变量。

  • 第 16 行判断matrix[j][i]与 0 的关系,含义为,只有值不为 0 才说明两个结点之间存在通路。

  • 一旦发现某个通路,就需要计算其距离。计算的方式是 17 行的,d_tmp = matrix[j][i] + process1(matrix, j)

  • 当得到了距离之后,还需要找到最短的那个距离,也就是 18 到 20 行的含义。这就是动态规划最优子结构的体现。

  • 一旦 i 减小到了 0,就说明已经到了起点 A。那么 A 到 A 的距离就是 0,直接第 10 行的 return 0 就可以了。

  • 经过运行,这段代码的输出结果是 18,这与我们手动的推导结果一致。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值