python实现线性回归

目录

普通最小二乘法

 岭回归

​编辑 多项式回归

 多元回归

 

 本文用sklearn库实现简单线性回归(普通最小二乘法,岭回归,多项式回归,多元回归),以下是相关代码,所用数据库为sklearn自带,由于是自带数据库,可能拟合效果会很差,但只作为学习其方法,有所错误还望斧正。

普通最小二乘法

# -*- coding: utf-8 -*-
# @Time : 2022/7/11 14:18
# @Author : 中意灬
# @FileName: 普通最小二乘法.py
# @Software: PyCharm
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_score
# 加载数据集(return_X_y:返回一个由两个 ndarray 组成的形状(n_samples,n_features)的元组 一个 2D 数组,
# 其中每行表示一个样本,每列表示给定样本的特征和/或目标)
diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
# 选择其中一个数据集
# np.newaxis增加一个新的维度,放在第一个位置即[np.newaxis,:]在最前面增肌一个位置,放在第二个位置[:,np.newaxis]即在中间增加一个维度,
#放在第三个位置[:,...,np.newaxis]在第三个位置增加一个维度
diabetes_X = diabetes_X[:,np.newaxis, 2]#在中间加一个维度,取其中最后一个数据集
# 划分训练集和测试集
X_train,X_test,y_train,y_test=train_test_split(diabetes_X,diabetes_y,test_size=0.3,random_state=0)
# 创建一个线性模型对象
regr = linear_model.LinearRegression()
print('交叉检验的R^2: ',np.mean(cross_val_score(regr,diabetes_X,diabetes_y,cv=3)))
# 用训练集训练模型fit(x,y,sample_weight=None)sample_weight为数组形状
regr.fit(X_train, y_train)
#
# 用测试集做一个预测
y_pred = regr.predict(X_test)
# 估计系数a
print("估计系数a: ", regr.coef_)
# 模型截距b
print("模型截距b: ",regr.intercept_)
# 均方误差即E(y_test-y_pred)^2
print("均方误差: " ,mean_squared_error(y_test, y_pred))
# 决定系数r^2,越接近1越好
print("决定系数R^2: " ,r2_score(y_test, y_pred))
# 绘制图像
plt.scatter(X_test, y_test, color="black")
plt.plot(X_test, y_pred, color="blue", linewidth=3)
plt.show()

 岭回归

# -*- coding: utf-8 -*-
# @Time : 2022/7/11 17:45
# @Author : 中意灬
# @FileName: 岭回归.py
# @Software: PyCharm
import sklearn.linear_model
import sklearn.datasets
import numpy as np
from sklearn.model_selection import train_test_split,cross_val_score
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
# 构建岭回归模型
clf=sklearn.linear_model.Ridge(alpha=0.5)
# 导入数据集
X,Y=sklearn.datasets.load_diabetes(return_X_y=True)
X=X[:,np.newaxis,2]
# 切分训练集和测试集
X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=0)
# 训练模型
clf.fit(X_train,y_train)
# 测试模型
y_pred=clf.predict(X_test)
print("交叉检验R^2: ",np.mean(cross_val_score(clf,X,Y,cv=3)))
# 回归系数a
print('回归系数a: ',clf.coef_)
# 截距b
print('截距b: ',clf.intercept_)
# MSN均方误差
print('MSN: ',mean_squared_error(y_pred,y_test))
# 决定系数R^2
print('R^2: ',clf.score(X_test,y_test))
plt.figure()
plt.scatter(X_test,y_test)
plt.plot(X_test,y_pred,c='r')
plt.show()

 多项式回归

# -*- coding: utf-8 -*-
# @Time : 2022/7/11 18:47
# @Author : 中意灬
# @FileName: 多项式回归.py
# @Software: PyCharm
import random

import  matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error,r2_score
import numpy as np
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline

# 构建拟合数据集
def f(x):
    return np.sin(x)*x+random.randint(1,10)
x=np.linspace(-1,11,100)
y=f(x)
x=x[:,np.newaxis]
y=y[:,np.newaxis]
# 切分数据集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
# 创建模型对象
model=make_pipeline(PolynomialFeatures(degree=2),LinearRegression())
# 训练模型
model.fit(x_train,y_train)
x_test=sorted(x_test)
# 预测数据
y_pred=model.predict(x_test)
# 估计系数beta
print('估计系数beta: ',model.steps[1][1].coef_)
# 截距a
print("截距: ",model.steps[1][1].intercept_)
# MSN均方误差
print('均方误差MSN: ',mean_squared_error(y_pred,y_test))
# 绝对系数R^2
print('绝对系数R^2: ',model.score(x_test,y_test))
# 交叉检验R^2
print('交叉检验R^2: ',np.mean(cross_val_score(model.steps[1][1],x_test,y_test,cv=2)))
# 绘图
plt.figure()
plt.scatter(x,y)
plt.plot(x_test,y_pred)
plt.show()

 多元回归

# -*- coding: utf-8 -*-
# @Time : 2022/7/11 17:26
# @Author : 中意灬
# @FileName: 多元回归.py
# @Software: PyCharm
from sklearn.linear_model import LinearRegression
import sklearn.datasets
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from sklearn.model_selection import train_test_split,cross_val_score
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
# 构线性回归模型
slm=LinearRegression()
# 导入数据集
X,Y=sklearn.datasets.load_diabetes(return_X_y=True)
X=X[:,(2,4)]
# 划分训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=0)
# 训练模型
slm.fit(x_train,y_train)
# 用测试集预测一下
y_pred=slm.predict(x_test)
# 估计系数beta
print("估计系数beta: ",slm.coef_)
# 截距b
print('截距b',slm.intercept_)
# MSN均方误差
print('均方误差MSN: ',mean_squared_error(y_pred,y_test))
# 绝对系数R^2
print('决定系数R^2: ',slm.score(x_test,y_test))
# 交叉检验系数R^2
print('交叉检验系数R^2: ',np.mean(cross_val_score(slm,X,Y,cv=3)))
fig=plt.figure()
ax1=Axes3D(fig)
ax1.scatter3D(x_train[:,0],x_train[:,1],y_train)
ax1.plot3D(x_test[:,0],x_test[:,1],y_pred,c='r')
plt.show()

拟合出来绘图应该是个平面,但这里就大概意思一下吧,大家把他当作一个平面,欸嘿嘿。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值