最大闭合子图最小割做法的证明
解法 我们建立超级源点和汇点。源点连向所有正点权的边,边权为其点权。所有负点权的点连向超级汇点,边权为其点权的相反数。原图中所有的边权在网络中修改为 inf \inf inf。求出其 s − t s-t s−t割,答案即为总点权减去最小割。
证明如下
求出的割集必然是简单割(只有与 s s s和 t t t相关的边)。最终从 s s s出发的闭合子图必然是闭合子图。设所有的正点权之和为 W W W。设割集中所有边权之和为 X X X。设 s − t s-t s−t割中 s s s所在的点集为 S S S,剩余的点集为 T T T。实际上,由于 T T T到 S S S没有出边(如果有的话边权为 inf \inf inf), W − X W-X W−X就是 S S S中所有正点的点权之和加上所有负点点权之和(这里指的是原值而不是相反数)( X X X包含所有 T T T中正点权值之和与 S S S中所有负点权的相反数之和)。而我们要最大化 W − X W-X W−X,就要最小化 X X X,也就是求最小割。
为什么要把正点和负点分开?因为最大闭合子图要么为空,要么包含正点,所以必须连接源点和正点。并且扣去最小割时进行减法操作,相当于颠倒正负,所以说负数连接汇点。