狄利克雷卷积的性质及证明

f ∗ g f*g fg f f f g g g的狄利克雷卷积1,那么又如下性质:

性质 1 1 1 交换律: f ∗ g = g ∗ f f*g=g*f fg=gf

解释 由于 f f f g g g轮换对称。

性质 2 2 2 结合律: ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f*g)*h=f*(g*h) (fg)h=f(gh)

解释

[ ( f ∗ g ) ∗ h ] ( n ) = ∑ i ∣ n ( f ∗ g ) ( i ) h ( n i ) = ∑ i ∣ n [ h ( n i ) ∑ d ∣ i f ( d ) g ( i d ) ] = ∑ i j k = n h ( i ) f ( j ) g ( k ) = ∑ i ∣ n [ f ( n i ) ∑ d ∣ i g ( d ) h ( i d ) ] = ∑ i ∣ n f ( n i ) ( g ∗ h ) ( i ) = [ f ∗ ( g ∗ h ) ] ( n ) [(f*g)*h](n)=\sum\limits_{i\mid n}(f*g)(i)h(\frac{n}{i})=\sum\limits_{i\mid n}\left[h(\frac{n}{i})\sum\limits_{d\mid i}f(d)g(\frac{i}{d})\right]=\sum\limits_{ijk=n}h(i)f(j)g(k)=\sum\limits_{i\mid n}\left[f(\frac{n}{i})\sum\limits_{d\mid i}g(d)h(\frac{i}{d})\right]=\sum\limits_{i\mid n}f(\frac{n}{i})(g*h)(i)=[f*(g*h)](n) [(fg)h](n)=in(fg)(i)h(in)=in h(in)dif(d)g(di) =ijk=nh(i)f(j)g(k)=in f(in)dig(d)h(di) =inf(in)(gh)(i)=[f(gh)](n)

性质 3 3 3 分配律: f ∗ ( g + h ) = f ∗ g + f ∗ h f*(g+h)=f*g+f*h f(g+h)=fg+fh

解释
[ f ∗ ( g + h ) ] ( n ) = ∑ i ∣ n f ( i ) ( g + h ) ( n i ) = ∑ i ∣ n f ( i ) [ g ( n i ) + h ( n i ) ] = ∑ i ∣ n f ( i ) g ( n i ) + f ( i ) h ( n i ) = ∑ i ∣ n f ( i ) g ( n i ) + ∑ i ∣ n f ( i ) h ( n i ) = ( f ∗ g ) ( n ) + ( f ∗ h ) ( n ) [f*(g+h)](n)=\sum\limits_{i\mid n}f(i)(g+h)(\frac{n}{i})=\sum\limits_{i\mid n}f(i)[g(\frac{n}{i})+h(\frac{n}{i})]=\sum\limits_{i\mid n}f(i)g(\frac{n}{i})+f(i)h(\frac{n}{i})=\sum\limits_{i\mid n}f(i)g(\frac{n}{i})+\sum\limits_{i\mid n}f(i)h(\frac{n}{i})=(f*g)(n)+(f*h)(n) [f(g+h)](n)=inf(i)(g+h)(in)=inf(i)[g(in)+h(in)]=inf(i)g(in)+f(i)h(in)=inf(i)g(in)+inf(i)h(in)=(fg)(n)+(fh)(n)

性质 4 4 4 两个积性函数的狄利克雷卷积仍然是积性函数。

解释 对于任意互质的 m m m n n n与积性函数 f f f g g g,都有:
( f ∗ g ) ( m ) ⋅ ( f ∗ g ) ( n ) = ∑ i ∣ m f ( i ) g ( m i ) ∑ i ∣ n f ( i ) g ( n i ) = ∑ i ∣ m ∑ j ∣ n f ( i ) g ( m i ) f ( j ) g ( n j ) = ∑ i ∣ m ∑ j ∣ n f ( i j ) g ( m n i j ) = ∑ k ∣ m n f ( k ) g ( m n k ) = ( f ∗ g ) ( m n ) (f*g)(m)\cdot(f*g)(n)=\sum\limits_{i\mid m}f(i)g(\frac{m}{i})\sum\limits_{i\mid n}f(i)g(\frac{n}{i})=\sum\limits_{i\mid m}\sum\limits_{j\mid n}f(i)g(\frac{m}{i})f(j)g(\frac{n}{j})=\sum\limits_{i\mid m}\sum\limits_{j\mid n}f(ij)g(\frac{mn}{ij})=\sum\limits_{k\mid mn}f(k)g(\frac{mn}{k})=(f*g)(mn) (fg)(m)(fg)(n)=imf(i)g(im)inf(i)g(in)=imjnf(i)g(im)f(j)g(jn)=imjnf(ij)g(ijmn)=kmnf(k)g(kmn)=(fg)(mn)


  1. ( f ∗ g ) ( n ) = ∑ i ∣ n f ( i ) g ( n i ) (f*g)(n)=\sum\limits_{i\mid n}f(i)g(\frac{n}{i}) (fg)(n)=inf(i)g(in)​​ ↩︎

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值