【力扣hot100】刷题笔记Day25

前言

  • 这几天搞工作处理数据真是类似我也,还被老板打电话push压力有点大的,还好搞的差不多了,明天再汇报,赶紧偷闲再刷几道题(可恶,被打破连更记录了)
  • 这几天刷的是动态规划,由于很成体系不适合零散刷,还是把代码随想录动态规划部分的题目快速再过一遍,代码简单但是思路也要记住

139. 单词拆分 - 力扣(LeetCode)

  • 动态规划

    • class Solution:
          def wordBreak(self, s: str, wordDict: List[str]) -> bool:
              n = len(s)
              dp = [False] * (n+1)  # dp[i]表示s[0:i]可以拼接,完全背包,排列数
              dp[0] = True   # 由于需要dp[0]进行推导,初始化为True
              for j in range(1, n+1):  # 遍历背包
                  for word in wordDict:   # 遍历物品
                      l = len(word)
                      if j >= l:
                          if dp[j-l] and s[j-l:j] == word:
                              dp[j] = True
                              break  # 可以拼接就break
              return dp[n]

 300. 最长递增子序列 - 力扣(LeetCode)

  • 动态规划

    • class Solution:
          def lengthOfLIS(self, nums: List[int]) -> int:
              n = len(nums)  # dp[i]表示以nums[i]结尾的最长递增子串长度
              dp = [1] * n   # 初始化为全1,子串至少为1个
              res = 1  # 结果先取1
              for i in range(1, n):
                  for j in range(i):
                      if nums[i] > nums[j]:  # 只要比前面的递增,子串长度+1
                          dp[i] = max(dp[i], dp[j] + 1)
                  res = max(res, dp[i])  # 更新最长值
              return res

152. 乘积最大子数组 - 力扣(LeetCode)

  • 动态规划

    • class Solution:
          def maxProduct(self, nums: List[int]) -> int:
              n = len(nums)
              dp_max = [float('-inf')] * n  # 表示以nums[i]为底的连续子数组的最大乘积,也可以用pre_max一个变量表示
              dp_min = [float('inf')] * n  # 表示以nums[i]为底的连续子数组的最小乘积,也可以用pre_min一个变量表示
              dp_max[0] = dp_min[0] = res = nums[0]
              for i in range(1, n):
                  # 由于当前可能正可能负,三种取最大/小:当前数,前最大×当前数,前最小×当前数
                  dp_max[i] = max(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i])
                  dp_min[i] = min(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i])
                  res = max(res, dp_max[i])
              return res
  • 符号个数

    • 思路参考题解及评论区
    • class Solution:
          def maxProduct(self, nums: List[int]) -> int:
              reverse_nums = nums[::-1]
              # 先按照0分成多个数组,在不同数组里统计奇数个数
              # 负数个数为偶数,全部相乘,负数个数为奇数,某奇数的前缀乘积或后缀乘积为最大值
              for i in range(1, len(nums)):
                  nums[i] *= nums[i - 1] or 1   # 前缀乘积(遇到0就重置)
                  reverse_nums[i] *= reverse_nums[i - 1] or 1  # 后缀乘积(遇到0就重置)
              return max(nums + reverse_nums)  # 一定是前缀乘积和后缀乘积的最大值

416. 分割等和子集 - 力扣(LeetCode)

  • 01背包

    • class Solution:
          def canPartition(self, nums: List[int]) -> bool:
              numSum = sum(nums)
              if numSum % 2 == 1: return False  # 总和为奇数无法等分
              target = numSum // 2  # 01背包大小
              dp = [0] * (target + 1)  # dp[j]表示以j为容量的背包装的最大价值
              for i in range(len(nums)):  # 遍历物品,从头到尾,重量和价值都为nums[i]
                  for j in range(target, nums[i] - 1, -1):  # 遍历背包,从target到nums[i]倒序
                      dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
              return dp[target] == target  # 如果target容量的背包刚好能装价值为target,找到分割方法

32. 最长有效括号 - 力扣(LeetCode)

  • 辅助栈

    • 参考题解
    • class Solution:
          def longestValidParentheses(self, s: str) -> int:
              st = []  # 栈中存储的是到当前位置暂时不可以构成括号的索引
              res = 0
              for i in range(len(s)):
                  # 可以构成括号:栈不空 and 当前字符为'(' and 栈顶字符为'('
                  if st and s[i] == ')' and s[st[-1]] == '(':
                      st.pop()   # 弹出栈顶'('
                      # 与最远不能构成括号的下标计算距离,更新最大长度,注意越界
                      res = max(res, i - (st[-1] if st else - 1)) 
                  # 不可以构成括号:栈空 or 当前字符为')' or 栈顶字符为')'
                  else:
                      st.append(i)  # 存入下标
              return res
  • 动态规划

    •  参考题解

    • class Solution:
          def longestValidParentheses(self, s: str) -> int:
              n = len(s)
              if n <= 1: return 0
              dp = [0] * n  # dp[i]表示以s[i]结尾的最长有效括号子串
              res = 0   # 用于更新最大值
              for i in range(1, n):
                  # (),在dp[i-2]基础上直接延续2个
                  if s[i] == ')' and s[i-1] == '(':           
                      dp[i] = dp[i-2] + 2 if i >= 2 else 2    # 防止越界,dp[0]以前为0
                  # )),先看前一个)匹配多长,再看后一个)能否匹配上(,可以的话就+2
                  elif s[i] == ')' and s[i-1] == ')':         
                      sub_len = dp[i-1]  # 前一个)已经匹配的长度
                      if i-sub_len-1 >= 0 and s[i-sub_len-1] == '(':  # 后一个)要找到(才能匹配上
                          last = dp[i-sub_len-2] if i-sub_len-2 >= 0 else 0  # 找到(之前已经匹配多长,防止越界,dp[0]以前为0
                          dp[i] = dp[i-1] + last + 2  # 前一个)匹配的长度 + 后一个)找到(之前已经匹配的长度 + 2
                  res = max(res, dp[i])  # 更新最大值,没有以上情况dp[i]就是0
              return res

后言

  • 最后这道困难题真顶啊,要完全搞懂花了不少时间,这两天继续去巩固dp去
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值