前言
- 这几天搞工作处理数据真是类似我也,还被老板打电话push压力有点大的,还好搞的差不多了,明天再汇报,赶紧偷闲再刷几道题(可恶,被打破连更记录了)
- 这几天刷的是动态规划,由于很成体系不适合零散刷,还是把代码随想录动态规划部分的题目快速再过一遍,代码简单但是思路也要记住
139. 单词拆分 - 力扣(LeetCode)
-
动态规划
-
class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> bool: n = len(s) dp = [False] * (n+1) # dp[i]表示s[0:i]可以拼接,完全背包,排列数 dp[0] = True # 由于需要dp[0]进行推导,初始化为True for j in range(1, n+1): # 遍历背包 for word in wordDict: # 遍历物品 l = len(word) if j >= l: if dp[j-l] and s[j-l:j] == word: dp[j] = True break # 可以拼接就break return dp[n]
-
300. 最长递增子序列 - 力扣(LeetCode)
-
动态规划
-
class Solution: def lengthOfLIS(self, nums: List[int]) -> int: n = len(nums) # dp[i]表示以nums[i]结尾的最长递增子串长度 dp = [1] * n # 初始化为全1,子串至少为1个 res = 1 # 结果先取1 for i in range(1, n): for j in range(i): if nums[i] > nums[j]: # 只要比前面的递增,子串长度+1 dp[i] = max(dp[i], dp[j] + 1) res = max(res, dp[i]) # 更新最长值 return res
-
152. 乘积最大子数组 - 力扣(LeetCode)
-
动态规划
-
class Solution: def maxProduct(self, nums: List[int]) -> int: n = len(nums) dp_max = [float('-inf')] * n # 表示以nums[i]为底的连续子数组的最大乘积,也可以用pre_max一个变量表示 dp_min = [float('inf')] * n # 表示以nums[i]为底的连续子数组的最小乘积,也可以用pre_min一个变量表示 dp_max[0] = dp_min[0] = res = nums[0] for i in range(1, n): # 由于当前可能正可能负,三种取最大/小:当前数,前最大×当前数,前最小×当前数 dp_max[i] = max(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i]) dp_min[i] = min(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i]) res = max(res, dp_max[i]) return res
-
-
符号个数
- 思路参考题解及评论区
-
class Solution: def maxProduct(self, nums: List[int]) -> int: reverse_nums = nums[::-1] # 先按照0分成多个数组,在不同数组里统计奇数个数 # 负数个数为偶数,全部相乘,负数个数为奇数,某奇数的前缀乘积或后缀乘积为最大值 for i in range(1, len(nums)): nums[i] *= nums[i - 1] or 1 # 前缀乘积(遇到0就重置) reverse_nums[i] *= reverse_nums[i - 1] or 1 # 后缀乘积(遇到0就重置) return max(nums + reverse_nums) # 一定是前缀乘积和后缀乘积的最大值
416. 分割等和子集 - 力扣(LeetCode)
-
01背包
-
class Solution: def canPartition(self, nums: List[int]) -> bool: numSum = sum(nums) if numSum % 2 == 1: return False # 总和为奇数无法等分 target = numSum // 2 # 01背包大小 dp = [0] * (target + 1) # dp[j]表示以j为容量的背包装的最大价值 for i in range(len(nums)): # 遍历物品,从头到尾,重量和价值都为nums[i] for j in range(target, nums[i] - 1, -1): # 遍历背包,从target到nums[i]倒序 dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]) return dp[target] == target # 如果target容量的背包刚好能装价值为target,找到分割方法
-
32. 最长有效括号 - 力扣(LeetCode)
-
辅助栈
- 参考题解
-
class Solution: def longestValidParentheses(self, s: str) -> int: st = [] # 栈中存储的是到当前位置暂时不可以构成括号的索引 res = 0 for i in range(len(s)): # 可以构成括号:栈不空 and 当前字符为'(' and 栈顶字符为'(' if st and s[i] == ')' and s[st[-1]] == '(': st.pop() # 弹出栈顶'(' # 与最远不能构成括号的下标计算距离,更新最大长度,注意越界 res = max(res, i - (st[-1] if st else - 1)) # 不可以构成括号:栈空 or 当前字符为')' or 栈顶字符为')' else: st.append(i) # 存入下标 return res
-
动态规划
-
参考题解
-
class Solution: def longestValidParentheses(self, s: str) -> int: n = len(s) if n <= 1: return 0 dp = [0] * n # dp[i]表示以s[i]结尾的最长有效括号子串 res = 0 # 用于更新最大值 for i in range(1, n): # (),在dp[i-2]基础上直接延续2个 if s[i] == ')' and s[i-1] == '(': dp[i] = dp[i-2] + 2 if i >= 2 else 2 # 防止越界,dp[0]以前为0 # )),先看前一个)匹配多长,再看后一个)能否匹配上(,可以的话就+2 elif s[i] == ')' and s[i-1] == ')': sub_len = dp[i-1] # 前一个)已经匹配的长度 if i-sub_len-1 >= 0 and s[i-sub_len-1] == '(': # 后一个)要找到(才能匹配上 last = dp[i-sub_len-2] if i-sub_len-2 >= 0 else 0 # 找到(之前已经匹配多长,防止越界,dp[0]以前为0 dp[i] = dp[i-1] + last + 2 # 前一个)匹配的长度 + 后一个)找到(之前已经匹配的长度 + 2 res = max(res, dp[i]) # 更新最大值,没有以上情况dp[i]就是0 return res
-
后言
- 最后这道困难题真顶啊,要完全搞懂花了不少时间,这两天继续去巩固dp去