目录
一、层次分析法简述
层次分析法(Analytic Hierarchy Process,AHP)是一种多准则决策方法,其核心思想是将一个复杂的决策问题分解成多个层次,然后通过比较不同因素之间的相对重要性来做出决策。主要目的是给评价指标赋相应的权重。
第一步:构建层次结构: 首先,将要解决的问题分解成一个层次结构,包括目标层、准则层或指标层、方案层等层次。这些层次之间是逐层递进的关系,最顶层是最终的决策目标,中间层一般是我们的评价指标,底层是具体的方案或选项。
第二步:两两比较: 对每个层次中的元素进行两两比较,以确定它们之间的相对重要性。比较的结果以矩阵形式表示,称为判断矩阵。决策者使用尺度从1到9的标准判断两个元素之间的重要性,1表示相同重要性,9表示极端重要性差异,中间值表示相对程度。
第三步:一致性检验: 对比每个判断矩阵的一致性指标CI和随机平均一致性指标RI,以确定决策者的比较是否一致。如果一致性较差,可能需要重新修改判断矩阵,直到达到一定的一致性标准。
第四步:计算权重向量: 根据判断矩阵,计算出每个层次中各元素的权重。主要通过算术平均法、几何平均法、特征值法求解权重向量。
第五步:综合评估: 将各层次的权重以及方案的评价指标综合起来,计算出各个方案的综合得分。这样可以帮助决策者找到最佳的方案或决策。
在很多综合评价类的问题中,我们往往需要知道那些指标是比较重要的,那些指标是不太重要的,例如我们在考研的过程中需要经过初试和面试,有的学校将初试成绩取60%,复试成绩取40%,此时的权重向量为U=[0.6,0.4],根据这个权重,从而决定这个学生是否录取。为了描述这种指标的重要程度,我们需要引入一个重要的概念——权重,权重是一个相对于整体评价而言的量化概念,用于衡量某个因素在整体评价中的相对重要性。
在实际应用中,一般情况下是使用主观经验法来确定权重,但这个方法有一个缺点就是主观性太强,评价并不是很科学,所有有没有一种方法可以求出评价指标的权重?求权重的方法有很多种,例如:TOPSIS法、熵权法、层次分析法等。TOPSIS法与熵权法是基于已有数据来进行评价,相较于层次分析法比较客观,如果数据不是很明确,且数据对指标与指标之间的影响很小,建议使用层次分析法。
二、层次分析法相关重点
相关内容的讲解可以参考以下两个视频(个人觉得把这两位老师的讲解看完,已经可以完全掌握层次分析法):
数学建模层次分析法模型(综合评价类问题)_哔哩哔哩_bilibili
地址: