- 博客(23)
- 收藏
- 关注
原创 损失函数和反向传播
但是一开始,模型的预测通常是错误的,损失函数就是用来。刚才我们知道了模型预测错了,有了一个损失值。自动调整神经元之间的“权重”(就像神经网络的记忆),让它下次预测更准!他通过反向传播知道了:“啊,原来我拐弯太早了,是这个肌肉出力不对”。(例如权重和偏置),使得模型在下一次训练时能够做出更准确的预测。比如你应该预测“狗”概率高,但你却预测“猫”高,那损失就大。:通过计算误差的梯度来更新权重,使得模型的预测越来越准确。第一次他跑偏了(预测错了),你给他一个评分(损失值)。用损失函数算出预测错了多少(损失值)。
2025-05-12 11:04:54
291
原创 如何计算卷积后的输出尺寸
(典型的 CIFAR-10 图像大小),我们来计算一下卷积操作后的输出尺寸。假设输入图像的尺寸是。(因为填充的关系)。输入尺寸:32x32。
2025-05-09 11:53:10
226
原创 详解nn.Sequential
nn.Sequential是一种简化写法,用来把多个神经网络层按顺序串起来使用,就像搭积木一样。Sequential 会自动按顺序调用所有的层。每一个“层”都是一段处理,它们会按你写的顺序。先经过 Linear(3→2):输出两个数。然后再 Linear(2→1):输出一个数。输入是一个长度为 3 的向量(比如。一个线性层,把输入变成 256 维。是不是看着结构清晰但写起来有点繁锁。然后经过 ReLU:把负数变成 0。一个线性层,输出变成 10 类别。一个 ReLU 激活层。
2025-05-05 18:35:12
321
原创 torch.reshape讲解(小白版)
最后,一句话总结就是:图像在深度学习中,其实就是一个“多维数组”,reshape 就是用来调整这个数组的形状,方便模型处理。,但有时候模型要你把它“展平”成一排用 —— reshape 就派上用场啦!每个通道的大小可能是 32 × 32(比如 CIFAR10)这就叫做图像的“张量形状”(Tensor shape)“重新站队,我们现在要每两个人一组,一共几组。这是一个一行六列的排法(形状叫(1,6))有时候我们训练的模型,比如线性层(,人(数据)没变,只是队形变了。是“换形状”,就像重新排队一样。
2025-05-05 18:09:12
197
原创 深度学习中常见的各类层(Layer)
执行线性变换(乘权重矩阵 + 偏置),用于特征组合、分类。:Softmax(分类)或 Sigmoid(二分类)最大池化(Max Pooling):取区域最大值。:图像(像素)、文本(词向量)、音频(波形)。平均池化(Avg Pooling):取平均值。:提取图像中的局部特征,如边缘、颜色块等。:压缩特征图尺寸,减少参数、提升计算速度。:加速训练,稳定收敛,减少梯度爆炸或消失。:输出模型的最终结果,如分类概率、坐标等。:最后输出分类结果、处理非图像数据。:参数少、计算高效、能保留空间结构。
2025-05-05 17:24:19
209
原创 线性层(全连接层)和其他层
线性层就是输入向量 × 权重矩阵 + 偏置,是神经网络中用于“特征组合”和“结果输出”的基本工具。PyTorch 会自动初始化权重和偏置,并执行矩阵运算。(例如 tabular 数据、文本特征):输入数据(通常是一个向量或矩阵),来“调整”输入到输出的关系。(比如最后输出 10 个类别)(2)其他层的对比和用途。(3)什么时候用到线性层。(4)一个完整的例子。
2025-05-05 17:23:51
220
原创 卷积(如果一点都不理解卷积看这一个)
卷积是“放大有用的地方、抹去无用的地方”的一种“特征提取”手段!这个小披萨专门突出你关心的特征,比如专门把芝士的区域亮出来!成一堆小数,比如 0.01、-0.03、0.002 之类的。用一个小窗口(叫卷积核)在图片上扫来扫去,提取出局部特征。神经网络拿提取到的特征去做分类(比如识别猫/狗)。每个卷积核的参数(也就是小3×3矩阵里的数字),一次次训练后,卷积核越来越懂得提取有用的特征了!输出16张新的特征图,每张图专门突出某种特征!剩下的事情(学什么特征,卷积核长什么样),
2025-04-29 12:02:38
222
原创 池化(Pooling)
池化就是在卷积提取特征之后,进一步缩小特征图的大小,突出最重要的特征,减少计算量。卷积之后,图片/特征图还是挺大的(比如 32×32,28×28)一句话总结:池化就是“缩小图片”,但保留最重要的信息!总而言之:“给图片做一个浓缩,只保留最重要的地方。直接拿大特征图去训练,计算量太大,容易过拟合。取每个2×2小块里的最大值。取每个2×2小块里的平均值。(6)一个实际池化的例子。卷积 ➔ 激活 ➔ 池化。卷积 ➔ 激活 ➔ 池化。(4)一个形象的比喻。(5)池化操作的参数。
2025-04-28 22:47:52
227
原创 神经网络之非线性激活
激活函数像一个“能量开关”,让重要特征发光发热,不重要的干掉!就像一个“加工厂”,把这些数字加工一下,让它们变得更有用!加了激活,网络就像有了血有了火,能学会分辨猫、狗、车、人!ReLU 就像一个“只让积极信息通过”的筛子。如果没有非线性激活,整个神经网络只是一堆。(5)在PyTorch中如何使用激活函数。如果没有激活,网络就是一块冷冰冰的铁板;(6)为什么要用ReLU,它有什么好处。(4)ReLU函数如何加工数字。是神经网络能强大起来的关键!(3) 常见的非线性激活函数。(1)什么是非线性激活。
2025-04-28 16:50:07
196
原创 卷积层Conv2d
因为卷积核是3x3,周围补一圈0,大小就能保持不变了!,你只要告诉它图片、卷积核大小,它自己动手帮你干完!之后将图片放进去,Pytorch就能自动卷积了。(32×32进,32×32出), 那要设置。(1)什么是Conv2d(卷积层)的小卷积核,每次移动1格,不补0。(5)小技巧:如果想要输出大小不变。(2)Conv2d的基本公式。(红色R、绿色G、蓝色B)。如果你希望卷积后图片大小。(3)一个超详细的例子。(6)总结用于记忆版。
2025-04-28 16:27:28
165
原创 卷积操作(小白版)
卷积,就是用一个小窗口滑动在图像上,每次做“乘乘加加”,最后得到一张新图,里面的内容是对原图某些特征的提取。,每次滑动的时候,把窗口里的数字和图片里的数字“对应相乘再加起来”,最后得到一个新的值,组成一张新的图片。:每次只处理小区域,不像全连接层一次处理整个图片。(1)什么是卷积操作(Convolution)每次扫到一个位置,做一次计算,然后记下结果,像拿一个小尺子,在一张大图上挨着扫,假设有一张简单的小图片(3*3):把大的图片缩小成有用的特征。(2)举个简单的例子。直到把整个图片扫完,
2025-04-28 15:57:03
242
原创 神经网络的基本骨架-nn.Module的使用
有些模型的 forward 可以根据输入动态选择不同的路径(像 Transformer 里做 Mask)(无论是简单的线性回归,还是复杂的 ResNet、Transformer)方便使用 PyTorch 的各种功能(保存、加载模型、迁移到 GPU)forward 可以有条件逻辑(如 dropout),提前把网络结构搭好(比如有几层卷积,几层全连接)(5)为什么要区分_init_和forward。统一管理前向传播(forward)**逻辑。(2) 为什么要有nn.Module。(3)一个最简单的例子。
2025-04-28 15:44:41
279
原创 数据集使用代码的详细讲解
封装训练数据集,使其支持批量读取(batch)、自动打乱(shuffle)和并行加载(num_workers)等功能。其他参数保持不变:根目录、是否下载、是否应用 transform。(1)加载训练数据集的代码。(2) 加载测试数据集的代码。
2025-04-25 12:07:24
167
原创 归一化处理详细讲解
原始图像的像素值是 0 到 255 的整数(比如一张 RGB 彩色图就是 3 通道,每个像素都是 [0~255])。归一化就算把数据压缩到一个范围内(比如[0-1]或[-1-1]),让模型更容易学习。(3)PyTorch中的归一化:transforms.Normalize。如果像素值是 1(已经 ToTensor 变成了 0~1 之间)这个值是经过“归一化”之后的,更适合送进神经网络中。(1)什么是归一化(Normalization)?把图像的值从 [0, 1] → [-1, 1]如果你有一张图片,经过。
2025-04-25 12:01:25
287
原创 torchvision中的数据集使用
以简单的CIFAR为例,因为这个数据集的大小较小,适合测试使用。它是机器学习和计算机视觉中最经典的图像分类任务数据集之一。(3)数据集结构,使用torchvision下载后。(5)PYTORCH中使用CIFAR-10。数据已经被打乱好几次,确保训练时的泛化性。每张图都是彩色图(RGB),大小为。图片很小(适合快速实验)(1)什么是CIFAR。
2025-04-25 11:55:27
37
原创 一些具体的细节
注意:这个图片不能直接喂给模型,需要转成 PyTorch 的。会将这个归一化后的图像写入 TensorBoard。(1)初始化 TensorBoard 日志写入器。(4)进行归一化处理 Normalize。来可视化这些数据(图像/标量等)。(3) 转换为 Tensor。具体代码以及涉及知识点解析。打开一张图片,返回一个。
2025-04-23 15:31:25
264
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人