卷积(如果一点都不理解卷积看这一个)

(1)卷积到底是干什么的

卷积的本质是:

用一个小窗口(叫卷积核)在图片上扫来扫去,提取出局部特征。

特征,比如:

  • 边缘(哪里明暗变化了)

  • 角落(哪里是锐角/直角)

  • 纹理(斜线/曲线的方向)

  • 颜色变化、结构信息...

总结一句话:卷积是“放大有用的地方、抹去无用的地方”的一种“特征提取”手段!

(2)用一个生活中的比喻

想象你的图片是一大块披萨
你拿着一个小小的放大镜(卷积核),
每次只看一小块披萨(比如3x3格子),
看里面有什么特别的花纹、材料,比如:

  • 有芝士?

  • 有香肠?

  • 有蘑菇?

你每次观察(运算一次),记录下你看到的特征强度
然后,放大镜往右边移动一点,再继续观察,记录。

观察完所有地方,就得到了一个新的小披萨(特征图),
这个小披萨专门突出你关心的特征,比如专门把芝士的区域亮出来!

(3)那么在Conv2d里是怎么做的

conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)
  • in_channels=3:输入是彩色图(3通道,RGB)

  • out_channels=16:要学16种不同特征(比如边缘、角落、纹理)

  • kernel_size=3:卷积核是3×3大小的小窗口

  • stride=1:每次移动1格

  • padding=1:四周补一圈0,让输出大小不变

效果:

  • 原图进来 ➔ 用16个不同的小放大镜去扫一遍

  • 每个放大镜学一个特定特征

  • 输出16张新的特征图,每张图专门突出某种特征!

 通俗理解:

Conv2d 就是帮你找到图片里不同种类的花纹、结构、形状!

(4)Conv2d特征提取,需要自己管吗

答案:

不需要自己手动提取特征!
只需要告诉 Conv2d

  • 输入有多少通道(RGB就是3)

  • 想要提取多少种特征(即 out_channels

剩下的事情(学什么特征,卷积核长什么样),
都是 神经网络通过学习自己搞定 的!

(5)那么卷积核一开始是随机的吗

答案:

一开始是随机的!

每个卷积核的参数(也就是小3×3矩阵里的数字),
在一开始建好 Conv2d 层的时候,
都会随机初始化成一堆小数,比如 0.01、-0.03、0.002 之类的。

为什么要随机?

  • 如果一开始都一样,那学习就没区别了。

  • 随机能让每个卷积核从不同角度去观察图片。

(6)那随机后卷积核是怎么变聪明的

靠训练!靠梯度下降!靠反向传播!

过程是这样的:

  1. 一开始卷积核是乱的,提取出来的特征也没什么意义。

  2. 神经网络拿提取到的特征去做分类(比如识别猫/狗)。

  3. 如果识别错了,根据误差(Loss)计算出每个卷积核该怎么修改。

  4. 用梯度下降算法,一点点调整卷积核里的小数值。

  5. 一次次训练后,卷积核越来越懂得提取有用的特征了!

最终:

  • 有些卷积核学会了检测边缘

  • 有些卷积核学会了检测角落

  • 有些卷积核学会了检测纹理

卷积核就是网络自己学出来的,不需要人手写!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值