(1)卷积到底是干什么的
卷积的本质是:
用一个小窗口(叫卷积核)在图片上扫来扫去,提取出局部特征。
特征,比如:
-
边缘(哪里明暗变化了)
-
角落(哪里是锐角/直角)
-
纹理(斜线/曲线的方向)
-
颜色变化、结构信息...
总结一句话:卷积是“放大有用的地方、抹去无用的地方”的一种“特征提取”手段!
(2)用一个生活中的比喻
想象你的图片是一大块披萨,
你拿着一个小小的放大镜(卷积核),
每次只看一小块披萨(比如3x3格子),
看里面有什么特别的花纹、材料,比如:
-
有芝士?
-
有香肠?
-
有蘑菇?
你每次观察(运算一次),记录下你看到的特征强度,
然后,放大镜往右边移动一点,再继续观察,记录。
观察完所有地方,就得到了一个新的小披萨(特征图),
这个小披萨专门突出你关心的特征,比如专门把芝士的区域亮出来!
(3)那么在Conv2d里是怎么做的
conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)
-
in_channels=3
:输入是彩色图(3通道,RGB) -
out_channels=16
:要学16种不同特征(比如边缘、角落、纹理) -
kernel_size=3
:卷积核是3×3大小的小窗口 -
stride=1
:每次移动1格 -
padding=1
:四周补一圈0,让输出大小不变
效果:
-
原图进来 ➔ 用16个不同的小放大镜去扫一遍
-
每个放大镜学一个特定特征
-
输出16张新的特征图,每张图专门突出某种特征!
通俗理解:
Conv2d 就是帮你找到图片里不同种类的花纹、结构、形状!
(4)Conv2d特征提取,需要自己管吗
答案:
不需要自己手动提取特征!
只需要告诉Conv2d
:
输入有多少通道(RGB就是3)
想要提取多少种特征(即
out_channels
)
剩下的事情(学什么特征,卷积核长什么样),
都是 神经网络通过学习自己搞定 的!
(5)那么卷积核一开始是随机的吗
答案:
一开始是随机的!
每个卷积核的参数(也就是小3×3矩阵里的数字),
在一开始建好 Conv2d
层的时候,
都会随机初始化成一堆小数,比如 0.01、-0.03、0.002 之类的。
为什么要随机?
-
如果一开始都一样,那学习就没区别了。
-
随机能让每个卷积核从不同角度去观察图片。
(6)那随机后卷积核是怎么变聪明的
靠训练!靠梯度下降!靠反向传播!
过程是这样的:
-
一开始卷积核是乱的,提取出来的特征也没什么意义。
-
神经网络拿提取到的特征去做分类(比如识别猫/狗)。
-
如果识别错了,根据误差(Loss)计算出每个卷积核该怎么修改。
-
用梯度下降算法,一点点调整卷积核里的小数值。
-
一次次训练后,卷积核越来越懂得提取有用的特征了!
最终:
-
有些卷积核学会了检测边缘
-
有些卷积核学会了检测角落
-
有些卷积核学会了检测纹理
卷积核就是网络自己学出来的,不需要人手写!