【Oracle报错】ERROR:ORA-01034: ORACLE not availableORA-27101: shared memory realm does not exist

本文概述了在尝试登录Oracle数据库时遇到的常见问题,包括错误ORA-01034和ORA-27101的解决方法,涉及检查监听、服务启动、SID确认、日志空间和通信通道等问题,提供详细的步骤和可能的原因分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

登录Oracle数据库的时候,出现了这个问题:

报错内容:

请输入用户名:  system
输入口令:

 ERROR:
ORA-01034: ORACLE not available
ORA-27101: shared memory realm does not exist
进程 ID: 0
会话 ID: 0 序列号: 0

网上搜到的解决方案一:

原回答链接:

error: ora-01034:oracle not available ora-27101:shared memory realm does not exist_chouzhan4828的博客-CSDN博客出现错误: 解决方法: 1 、先看oracle的监听和oracle的服务是否都启动了。启动oracle监听: cmd的命令行窗口下,输入lsnrctl start,回车即启动监听。 2 、查看oracle的sid叫什么,比如创建数据库的时...icon-default.png?t=O83Ahttps://blog.csdn.net/chouzhan4828/article/details/100812959按照此文章步骤操作后,结果如下:

 报错内容:

SQL> startup
ORACLE 例程已经启动。

Total System Global Area 3357155328 bytes
Fixed Size                  2180384 bytes
Variable Size            2046823136 bytes
Database Buffers         1291845632 bytes
Redo Buffers               16306176 bytes
数据库装载完毕。
ORA-03113: 通信通道的文件结尾
进程 ID: 10092
会话 ID: 45 序列号: 3


SQL> select * from user_tables;
ERROR:
ORA-03114: 未连接到 ORACLE

网上搜到的解决方案二:

原回答链接:ORA-01034:ORACLE not available ORA-27101解决方法_TianXHF的博客-CSDN博客_ora01034和ora27101解决方法oracle11g,在登录oracle时一输用户名密码经常出现ORACLE not available的情况:ORA-01034: ORACLE not availableORA-27101: shared memory realm does not exist进程 ID: 0会话 ID: 0 序列号: 0icon-default.png?t=O83Ahttps://blog.csdn.net/tian_xiao_tiger/article/details/117401079?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-2-117401079-blog-100812959.pc_relevant_3mothn_strategy_recovery&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-2-117401079-blog-100812959.pc_relevant_3mothn_strategy_recovery&utm_relevant_index=3按照此文章步骤操作后,结果如下:

报错内容:

SQL> startup pfile='D:\APP\Fengdan\admin\orcl\pfile\init.ora.8162022225056';
ORACLE 例程已经启动。

Total System Global Area 3357155328 bytes
Fixed Size                  2180384 bytes
Variable Size            1828719328 bytes
Database Buffers         1509949440 bytes
Redo Buffers               16306176 bytes
数据库装载完毕。
ORA-03113: 通信通道的文件结尾
进程 ID: 8396
会话 ID: 45 序列号: 3

网上搜到的解决方案三:

原回答链接:

ORA-03113: 通信通道的文件结尾_cc_0101的博客-CSDN博客_ora-03113一、报错及错误原因启动oracle数据库事报错:ORA-03113: 通信通道的文件结尾,报错内容如下图 出现问题后,去查看告警日志文件(D:\app\diag\rdbms\cjyorcl\cjyorcl\trace\alert_cjyorcl.log),日志报错内容如下图 通过告警日志发现是db_recovery_file_dest_size也叫归档日志空间不足导致的...icon-default.png?t=O83Ahttps://blog.csdn.net/cc_0101/article/details/87456258按照此文章步骤操作后,结果如下:

网上搜到的解决方案四:

原回答链接:

ora 01033 oracle initialization,[转载]ORACLE数据库出现了ORA-01033:ORACLE initialization_weixin_39716703的博客-CSDN博客由于这个问题超级复杂,所以开头有些操作我没有记录下来。当时我的日志文件REDO01.LOG,REDO02.LOG,REDO03.LOG这个3个文件都没有。我做了很久只恢复了第一个和第三个。而且这个日志文件里面没有恢复重做日志文件的内容。导致在恢复的时候提示没有恢复记录,需要更多的恢复数据。我在网上找了很多东西,都没有能解决的。下面是我将3个日志文件搞出来后的操作记录。我在网络上面看到很多人遇到这样...icon-default.png?t=O83Ahttps://blog.csdn.net/weixin_39716703/article/details/116510830

按照此文章步骤操作后,结果如下: (还没操作该方案)

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值