夸父追日:第九章 动态规划 part05

今日收获:完全背包,零钱兑换Ⅱ,组合总和Ⅳ,爬楼梯(进阶)

1. 完全背包(每种物品无限个)

题目链接:52. 携带研究材料(第七期模拟笔试) (kamacoder.com)

思路:对于01背包的一维dp数组解,倒序遍历背包容量是为了防止一个物品添加多次。反之正序遍历背包容量就可以多次添加物品,解决完全背包的问题。

方法:

import java.util.Scanner;

public class Main{
    public static void main(String[] args){
        Scanner sc=new Scanner(System.in);
        
        int N=sc.nextInt();
        int V=sc.nextInt();
        
        int[] weights=new int[N];
        int[] values=new int[N];
        
        for (int i=0;i<N;i++){
            weights[i]=sc.nextInt();
            values[i]=sc.nextInt();
        }
        
        // 一维背包数组
        int[] dp=new int[V+1];
        
        // 先遍历物品,再正序遍历背包
        for (int i=0;i<N;i++){
            for (int j=0;j<V+1;j++){
                if (j>=weights[i]){
                    dp[j]=Math.max(dp[j],dp[j-weights[i]]+values[i]);
                }
            }
        }
        
        System.out.println(dp[V]);
    }
}

2. 零钱兑换Ⅱ

题目链接:518. 零钱兑换 II - 力扣(LeetCode)

思路:本题属于完全背包问题的范畴,求装满背包的组合数

  • dp表示总金额为 i 时的组合个数
  • 初始化金额为0时的组合数为1(dp[0]=1)
  • 遍历顺序是先遍历物品再正序遍历背包(零钱可以无限使用)
  • 递推公式是不用当前硬币的组合数(dp[j])再加上用当前硬币的组合数(dp[j-coins[i]])

方法:

class Solution {
    public int change(int amount, int[] coins) {
        // 当amount为i时的组合数
        int[] dp=new int[amount+1];

        // 初始化
        dp[0]=1;

        for (int i=0;i<coins.length;i++){
            for (int j=1;j<amount+1;j++){
                if (j>=coins[i]){
                    dp[j]+=dp[j-coins[i]];
                }
            }
        }

        return dp[amount];
    }
}

总结:组合不要求顺序,排列则要求相同的数顺序不同则排列不同

(1)完全背包求组合数:先遍历物品再正序遍历背包。

(2)完全背包求排列数:先遍历背包再遍历物品。 

3. 组合总和Ⅳ

题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)

思路:完全背包问题中求装满背包的排列个数(题目要求不同顺序视作不同的结果)。与上一题不同的是遍历顺序。

(1)如果先遍历物品后遍历背包,那么排在后面的物品只能放在已经遍历过的物品后面,求的就是组合数

(2)如果先遍历背包,后遍历物品,那么同一种结果中的物品就会有顺序上的差异,得到排列数

方法:

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int len=nums.length;

        int[] dp=new int[target+1];

        // 初始化
        dp[0]=1;

        // 先正序遍历背包,后遍历物品
        for (int i=0;i<target+1;i++){
            for (int j=0;j<nums.length;j++){
                if (i>=nums[j]){
                    dp[i]+=dp[i-nums[j]];
                }
            }
        }
        
        return dp[target];
    }
}

4. 爬楼梯(进阶)

题目链接:57. 爬楼梯(第八期模拟笔试) (kamacoder.com)

思路:和上一题基本一样,需要爬n阶楼梯相当于容量为n的背包,每次都可以从1阶~m阶的范围中选择。

方法:

import java.util.Scanner;

public class Main{
    public static void main(String[] args){
        Scanner sc=new Scanner(System.in);
        
        int n=sc.nextInt();
        int m=sc.nextInt();
        
        int[] dp=new int[n+1];
        dp[0]=1;
        
        for (int i=0;i<n+1;i++){
            for (int j=1;j<=m;j++){
                if (i>=j){
                    dp[i]+=dp[i-j];
                }
            }
        }
        
        System.out.println(dp[n]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值