今日收获:完全背包,零钱兑换Ⅱ,组合总和Ⅳ,爬楼梯(进阶)
1. 完全背包(每种物品无限个)
题目链接:52. 携带研究材料(第七期模拟笔试) (kamacoder.com)
思路:对于01背包的一维dp数组解,倒序遍历背包容量是为了防止一个物品添加多次。反之正序遍历背包容量就可以多次添加物品,解决完全背包的问题。
方法:
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int N=sc.nextInt();
int V=sc.nextInt();
int[] weights=new int[N];
int[] values=new int[N];
for (int i=0;i<N;i++){
weights[i]=sc.nextInt();
values[i]=sc.nextInt();
}
// 一维背包数组
int[] dp=new int[V+1];
// 先遍历物品,再正序遍历背包
for (int i=0;i<N;i++){
for (int j=0;j<V+1;j++){
if (j>=weights[i]){
dp[j]=Math.max(dp[j],dp[j-weights[i]]+values[i]);
}
}
}
System.out.println(dp[V]);
}
}
2. 零钱兑换Ⅱ
题目链接:518. 零钱兑换 II - 力扣(LeetCode)
思路:本题属于完全背包问题的范畴,求装满背包的组合数
- dp表示总金额为 i 时的组合个数
- 初始化金额为0时的组合数为1(dp[0]=1)
- 遍历顺序是先遍历物品再正序遍历背包(零钱可以无限使用)
- 递推公式是不用当前硬币的组合数(dp[j])再加上用当前硬币的组合数(dp[j-coins[i]])
方法:
class Solution {
public int change(int amount, int[] coins) {
// 当amount为i时的组合数
int[] dp=new int[amount+1];
// 初始化
dp[0]=1;
for (int i=0;i<coins.length;i++){
for (int j=1;j<amount+1;j++){
if (j>=coins[i]){
dp[j]+=dp[j-coins[i]];
}
}
}
return dp[amount];
}
}
总结:组合不要求顺序,排列则要求相同的数顺序不同则排列不同
(1)完全背包求组合数:先遍历物品再正序遍历背包。
(2)完全背包求排列数:先遍历背包再遍历物品。
3. 组合总和Ⅳ
题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)
思路:完全背包问题中求装满背包的排列个数(题目要求不同顺序视作不同的结果)。与上一题不同的是遍历顺序。
(1)如果先遍历物品后遍历背包,那么排在后面的物品只能放在已经遍历过的物品后面,求的就是组合数
(2)如果先遍历背包,后遍历物品,那么同一种结果中的物品就会有顺序上的差异,得到排列数
方法:
class Solution {
public int combinationSum4(int[] nums, int target) {
int len=nums.length;
int[] dp=new int[target+1];
// 初始化
dp[0]=1;
// 先正序遍历背包,后遍历物品
for (int i=0;i<target+1;i++){
for (int j=0;j<nums.length;j++){
if (i>=nums[j]){
dp[i]+=dp[i-nums[j]];
}
}
}
return dp[target];
}
}
4. 爬楼梯(进阶)
题目链接:57. 爬楼梯(第八期模拟笔试) (kamacoder.com)
思路:和上一题基本一样,需要爬n阶楼梯相当于容量为n的背包,每次都可以从1阶~m阶的范围中选择。
方法:
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int[] dp=new int[n+1];
dp[0]=1;
for (int i=0;i<n+1;i++){
for (int j=1;j<=m;j++){
if (i>=j){
dp[i]+=dp[i-j];
}
}
}
System.out.println(dp[n]);
}
}