一、有序数组的平方:
题目链接:977. 有序数组的平方 - 力扣(LeetCode)
题目大意:将非递减顺序 排序的整数数组 nums的
每个数字平方 返回一个 非递减顺序 排序。
分析:可以使用暴力解法,先计算出每个元素的平方,再对新数组进行排序。但时间复杂度较高。为了降低时间复杂度,我们可以采用双指针法。双指针法的基本思想是:定义i与j指针,i指向起始位置,j指向终止位置,比较nums[i]与nums[j]的大小,按照题目要求对res数组进行更新。
代码:
1.暴力解法:
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
for(int i = 0; i < nums.size();i++)
{
nums[i] = nums[i]*nums[i];
}
sort(nums.begin(),nums.end());
return nums;
}
};
2.双指针解法:
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int i = 0;
int j = nums.size()-1;
vector<int> res(nums.size(),0);
int index = nums.size()-1;
while(i <= j)
{
if(nums[i]*nums[i]>nums[j]*nums[j])
{
res[index--] = nums[i]*nums[i];
i++;
}
else
{
res[index--] = nums[j]*nums[j];
j--;
}
}
return res;
}
};
二、长度最小的子数组
题目链接:力扣
题目大意:给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
分析:此题也可直接用暴力解法,用两个for循环寻找小于s的子数组,但复杂度相对较高为O(n2)。因此,我们可以从暴力解法出发做适当的优化——滑动窗口算法。
滑动窗口的思想:不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
1. 先初始化窗口的起始位置与结束位置
2.当窗口内的nums的和小于s时,窗口的结束位置向右滑动。
3.当窗口内的nums的和大于s时,窗口的初始位置发生移动,sum值需更新。
4.比较每次满足条件的长度,返回最优值。
时间复杂度:o (n)。
代码:
滑动窗口解法:
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int i = 0;
int sz = nums.size()-1;
int sum = 0;
int wlen = 0;
int res = INT32_MAX;
for(int j = 0; j <= sz; j++)
{
sum += nums[j];
while(sum >= target) //复杂度仍时o(n) 每个元素在滑动窗口进来操作一次,出去操作一次,每个元素都被操作两次。所以复杂度为2*n
{
wlen = j-i+1;
if(res > wlen)
{
res = wlen;
}
sum -= nums[i++];
}
}
if(res == INT32_MAX)
return 0;
else
return res;
}
};
三、螺旋矩阵Ⅱ
题目链接:力扣
题目大意:给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵
分析:此题需要螺旋遍历二维数组,确定每一条边的遍历方式则是关键。我们选用每天边左闭右开的遍历方法。
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> nums(n,vector<int>(n,0));
int startx = 0;//遍历开始的位置
int starty = 0;
int offset = 1;//决定每一行最后一个遍历的元素 遍历到n-offset的位置
int lop = n/2;//循环次数
int i,j;
int count = 1;//用于赋值
int mid = n/2;//判断是否有中间块
while(lop -- )
{
i = startx;
j = starty;
for( j = starty; j < n-offset; j++)
{
nums[startx][j] = count++;//从左到右
}
for( i = startx; i < n - offset; i++)
{
nums[i][j] = count++; 从上到下
}
for(;j>starty;j--)
{
nums[i][j] = count++;//从右往左
}
for(;i>startx;i--)
{
nums[i][j] = count++;//从下往上
}
startx++;//每循环一遍就对数值更新
starty++;
offset += 1;
}
if(n % 2 )
nums[mid][mid] = count;
return nums;
}
};