集训 Day 2 模拟赛总结

复盘

7:30 开题

想到几天前被普及组难度模拟赛支配的恐惧,下意识觉得题目很难

先看 T1,好像不是很难,魔改 Kruskal 应该就行

看 T2 ,感觉很神奇,看到多串匹配想到 AC 自动机,又想了想 NOIP 模拟赛 T2 考 AC 自动机?奇奇怪怪

T3 神奇构造,先放

T4 想到以前做过的一道很像的题,记得是转化成二维平面中的点会很好做,但仔细想想发现不对

回来准备码 T1,推了推细节感觉问题不大,毕竟纯模拟 Kruskal 过程,大概 7:50 开始码

8:20 码完,测大样例发现跑 1.7s,时间限制 1.2s,? 仔细分析了一下,感觉这个思路很像正解,应该是哪个细节没处理好

尝试一行一行删代码,看那个地方跑得慢,发现竟然是 s o r t sort sort !逆天,想了想改成桶排,大样例极限跑 1.1s ,以为能过,就扔了

看 T2 ,首先看出有性质:包含别人的串没用。那么枚举左端点,找右端点最小的能匹配的串就行,这个 AC 自动机可以解决

接下来唐氏了一会,一直想把这 n n n 个串转化成若干个矩形,然后平面内扫描线?

去了个厕所,突然发现直接 for 一遍就做完了!回忆了一下 AC 自动机的细节 ,10:10 码完过了大样例

接下来看 T3 ,想到一个很显然但巨难写的做法,感觉很不对,决定放弃先看 T4

发现 40 40 40 是送的 ,枚举 x x x 即可,快速码

接下来看式子, h i ⌈ a i x ⌉ h_i\left \lceil \frac{a_i}{x} \right \rceil hixai,意识到 后半部分得到变化是 s q r t sqrt sqrt 级的,想到对于 n ≤ 2000 n\leq 2000 n2000 可以把这些变化的点存起来

然发现数论分块会不了一点!不会找这些变化点

最后就在反复打表、猜性质,竟发现按 a i × h i a_i\times h_i ai×hi 排序后 x x x 有决策单调性?寄完了

最终 60 + 100 + 0 + 20 = 180 , rk_10086

总结一下,T1 应该再去拍一下的,或许能意识到时间上跑不过去的问题,赛后稍微卡一下常( vector<node> -> vector<int> ) 就过了

T3 构造实际上没那么难,应该多想想

T4 想的有点偏,对于 h i ⌈ a i x ⌉ h_i\left \lceil \frac{a_i}{x} \right \rceil hixai 结构应该优先考虑枚举 取整号内部的部分,这样是 O ( n l o g n ) O(nlogn) O(nlogn) 的,而不是数论分块的 n \sqrt n n

题解

T1

在这里插入图片描述
先说 K r u s k a l Kruskal Kruskal 做法

考虑暴力的情况:把所有边建出来,按权值从小到大排序

会发现枚举时会连着处理 一段本质上相同的边(连接同色点),考虑优化这个过程,直接 O ( 1 ) O(1) O(1) 算代价,同时需要注意标记 某颜色点内部是否连通

写的时候注意一下常数问题可以通过

接下来正解:

考虑最终状态,一定是每种颜色的连通块都至少往外连了一条边

那么对于每种颜色取出一个点,钦定这个点是往外连的,直接跑最小生成树

由于是完全图,考虑 P r i m Prim Prim,跑完后对于剩下的所有点,只需选择一个代价最小的颜色连上去即可,这一步可以直接把 P r i m Prim Prim w w w 数组拿来用

#include<bits/stdc++.h>
using namespace std ;

typedef long long LL ;
const int N = 5050 ; 

int n , a[N] ;
int x , y , l , h ;
// 完全图 prim  
int c[N] , e[N][N] ;
bool vis[N] ;

int main()
{
	scanf("%d" , &n ) ;
	for(int i = 1 ; i <= n ; i ++ ) {
		scanf("%d" , &a[i] ) ;
	}
	scanf("%d%d%d%d" , &x , &y , &l , &h ) ;
	int C = 0 , A = 1 , B = 1 ;
	for(int i = 1 ; i <= n*n ; i ++ ) {
		C = (1LL*x*C+y)%h ;
		if( A <= B ) {
			e[A][B] = e[B][A] = C ;
		}
		B ++ ;
		if( B == n+1 ) {
			A ++ ;
			B = 1 ;
		}
	}
	LL ans = 0 ;
	for(int i = 1 ; i <= n ; i ++ ) c[i] = e[1][i] ;
	vis[1] = 1 ;
	for(int i = 1 ; i < n ; i ++ ) {
		int Min = 1e9 , id ;
		for(int j = 1 ; j <= n ; j ++ ) {
			if( !vis[j] && Min > c[j] ) {
				Min = c[j] ;
				id = j ;
			}
		}
		vis[id] = 1 ;
		ans += Min ;
		for(int j = 1 ; j <= n ; j ++ ) c[j] = min( c[j] , e[id][j] ) ;
	}
	for(int i = 1 ; i <= n ; i ++ ) ans += 1LL*c[i]*(a[i]-1) ;
	printf("%lld" , ans ) ;
	return 0 ;
}

T2

比较简单,放一个 AC 自动机的板子,回忆一下

	char s[N] ;
	int tr[N*5][26] , tot , fail[N*5] , V[N*5] ;
	void Insert()
	{
		int p = 0 , len = strlen( s+1 ) ;
		for(int i = 1 ; i <= len ; i ++ ) {
			int c = s[i]-'a' ;
			if( !tr[p][c] ) tr[p][c] = ++tot , V[tot] = 1e9 ;
			p = tr[p][c] ;
		} 
		V[p] = len ;
	}
	void AC_build()
	{
		queue<int> q ;
		for(int i = 0 ; i < 26 ; i ++ ) {
			if( tr[0][i] ) q.push( tr[0][i] ) ;
		}
		while( !q.empty() ) {
			int x = q.front() ; q.pop() ;
			for(int i = 0 ; i < 26 ; i ++ ) {
				if( tr[x][i] ) fail[tr[x][i]] = tr[fail[x]][i] , q.push( tr[x][i] ) , V[tr[x][i]] = min( V[tr[x][i]] , V[fail[tr[x][i]]] ) ;
				else tr[x][i] = tr[fail[x]][i] ;
			}
		}
	}

T3

在这里插入图片描述
在这里插入图片描述

T4


比较套路的题,应该会的

考虑 x x x 已知时,每个人的局数显然是 h i ⌈ a i x ⌉ h_i\left \lceil \frac{a_i}{x} \right \rceil hixai

枚举 x x x 后再 check n n n 个人需要 n 2 n^2 n2 的复杂度,不可接受

( 赛时一直在想优化枚举 x x x 过程,但是 gg

考虑优化后半过程,在 x x x 一定时, 排好序后,对于一段 a i a_i ai ⌈ a i x ⌉ \left \lceil \frac{a_i}{x} \right \rceil xai 的值是一定的,那么只维护段内最大与次大的 h i h_i hi

枚举 j = ⌈ a i x ⌉ j=\left \lceil \frac{a_i}{x} \right \rceil j=xai,合法的 a i a_i ai 范围可以算出来 [ x × ( j − 1 ) + 1 , x × j ] [x\times (j-1)+1,x\times j] [x×(j1)+1,x×j] ,而且这样总复杂度是 O ( n l n ) O(nln) O(nln)

对于 h i h_i hi 简单的想法是 st 表维护,但有更好 (?) 的做法,直接维护 [ x × ( j − 1 ) + 1 , I N F ] [x\times (j-1)+1,INF] [x×(j1)+1,INF] 后缀最大值,这样显然是对的,但要注意不要重算

这样加速了对于每个 x x x 找最大\次大值 的过程,可以通过本题

#include<bits/stdc++.h>
using namespace std ;

typedef long long LL ;
const int N = 2e5+100 ; 

int T , n , a[N] , h[N] , Max ;
int Sm[N] , Sc[N] , id[N] ;
LL ans[N] ;

int main()
{
	scanf("%d" , &T ) ;
	while( T -- ) {
		scanf("%d" , &n ) ;
		for(int i = 1 ; i <= n ; i ++ ) {
			scanf("%d" , &h[i] ) ;
		}
		int Max = 0 ;
		memset( Sm , 0 , sizeof Sm ) ;
		memset( Sc , 0 , sizeof Sc ) ;
		for(int i = 1 ; i <= n ; i ++ ) {
			scanf("%d" , &a[i] ) ;
			Max = max( Max , a[i] ) ;
			if( h[i] > Sm[a[i]] ) {
				Sc[a[i]] = Sm[a[i]] ;
				Sm[a[i]] = h[i] ;
				id[a[i]] = i ;
			}
			else Sc[a[i]] = max( Sc[a[i]] , h[i] ) ;
		}
		for(int i = Max ; i >= 1 ; i -- ) {
			if( Sm[i+1] > Sm[i] ) {
				Sc[i] = Sm[i] ;
				Sm[i] = Sm[i+1] ;
				id[i] = id[i+1] ;
			}
			else Sc[i] = max( Sc[i] , Sm[i+1] ) ;
			Sc[i] = max( Sc[i] , Sc[i+1] ) ;
		}
		memset( ans , 0 , sizeof ans ) ;
		for(int x = 1 ; x <= Max ; x ++ ) {
			LL Mx = 0 , Cx = 0 ; int ID1 ;
			for(int j = 1 ; x*(j-1)+1 <= Max ; j ++ ) { // 每一段内找 h 最大/次大 即可 
				if( Mx < 1LL*Sm[x*(j-1)+1]*j ) {
					if( id[x*(j-1)+1] != ID1 ) Cx = Mx ;
					Mx = 1LL*Sm[x*(j-1)+1]*j ;
					ID1 = id[x*(j-1)+1] ;
				}
				else if( ID1 != id[x*(j-1)+1] ) {
					Cx = max( Cx , 1LL*Sm[x*(j-1)+1]*j ) ;
				}
				Cx = max( Cx , 1LL*Sc[x*(j-1)+1]*j ) ;
			}
			ans[ID1] = max( ans[ID1] , Mx-Cx ) ;
		}
		for(int i = 1 ; i <= n ; i ++ ) printf("%lld " , ans[i] ) ;
		printf("\n") ;
	}
	return 0 ;
}
  • 9
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值