1.不同的子序列
1.1 题目
. - 力扣(LeetCode)
1.2 题解
class Solution {
public:
int numDistinct(string s, string t)
{
//确定dp数组,dp[i][j]表示以i结尾的s和以j-1结尾的t,t在s中出现的次数
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1, 0));
//确定递推逻辑
//初始化
dp[0][0] = 1;
for (int i = 0; i < s.size() + 1; i++)
{
dp[i][0] = 1;
}
for (int j = 1; j < t.size() + 1; j++)
{
dp[0][j] = 0;
}
//开始遍历
for (int i = 1; i <= s.size(); ++i)
{
for (int j = 1; j <= t.size(); j++)
{
if (s[i - 1] == t[j - 1])
{
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
}
else
{
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[s.size()][t.size()];
}
};
2.两个字符串的删除操作
2.1 题目
. - 力扣(LeetCode)
2.2 题解
class Solution {
public:
int minDistance(string word1, string word2)
{
//确定dp数组,dp[i][j]表示以i-1结尾的word1和以j-1结尾的word2,最小步数
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size()+1,0));
//确定递推逻辑
//初始化
dp[0][0] = 0;
for (int i = 1; i <= word1.size(); i++)
{
dp[i][0] = i;
}for (int j = 1; j <= word2.size(); j++)
{
dp[0][j] = j;
}
//开始遍历
for (int i = 1; i <= word1.size(); i++)
{
for (int j = 1; j <= word2.size(); j++)
{
if (word1[i - 1] == word2[j - 1])
{
dp[i][j] = dp[i - 1][j - 1];
}
else
{
dp[i][j] = min(min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + 2);
}
}
}
return dp[word1.size()][word2.size()];
}
};
3.编辑距离
3.1 题目
. - 力扣(LeetCode)
3.2 题解
class Solution {
public:
int minDistance(string word1, string word2)
{
//确定dp数组,dp[i][j]表示以i-1J结尾的word1转换为以j-1结尾的word2
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
//确定递推公式
//初始化
dp[0][0] = 0;
for (int i = 1; i <= word1.size(); i++)
{
dp[i][0] = i;
}
for (int j = 1; j <= word2.size(); j++)
{
dp[0][j] = j;
}
//开始遍历
for (int i = 1; i <= word1.size(); i++)
{
for (int j = 1; j <= word2.size(); j++)
{
if (word1[i - 1] == word2[j - 1])
{
dp[i][j] = dp[i - 1][j - 1];
}
else
{
//增和删
int a = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
//换
int b = dp[i - 1][j - 1] + 1;
dp[i][j] = min(a, b);
}
}
}
return dp[word1.size()][word2.size()];
}
};