- 博客(95)
- 收藏
- 关注
原创 支持向量机
摘要:支持向量机(SVM)的性能高度依赖核函数选择,其核心思想是通过寻找最优超平面实现分类。硬间隔SVM要求严格线性可分,而软间隔SVM通过惩罚系数C平衡分类误差与间隔大小。SVM仅由支持向量决定决策边界,适合高维数据,但对核函数敏感且多分类处理效率低。关键要素包括核函数、拉格朗日乘子法和间隔优化,其中核函数构造方法直接影响模型表现。
2025-11-29 15:59:57
222
原创 注册表讲解
注册表是Windows系统的核心数据库,采用树形结构管理配置信息,包含5个根键。其中HKEY_CLASSES_ROOT键管理文件关联和右键菜单设置,其子键包括:1)以点开头的文件扩展名键,用于配置打开方式;2)*键用于全局文件配置;3)CLSID键包含程序组件的线程模型配置;4)Directory键可配置文件夹右键菜单。通过OpenWithProgids键可实现文件扩展名与程序的关联,并设置默认打开程序。注册表通过shell键配置文件的右键菜单选项,背景菜单则通过Directory/Background/s
2025-11-17 22:35:54
335
原创 运算放大器虚短的本质解释
摘要:运算放大器具有两个本质特性:1)放大特性vout=A(v+-v-),输出受供电电压限制;2)输入高阻抗特性,输入电流近似为零。虚短特性可由上述特性推导得出。在同相放大器中,反馈机制会使得v-逐渐趋近v+,最终达到v+=v-的动态平衡状态。模拟实验表明放大倍数越大,稳定时v+与v-的差值越小。通过Python代码模拟了输出电压和反馈电压的动态变化过程,验证了运算放大器的闭环工作原理。
2025-11-15 17:06:57
49
原创 正负反馈的判别
摘要:本文介绍了电路反馈的基本概念和分类(正/负反馈),重点阐述了反馈回路的判断方法。详细说明了三极管各极电压变化规律、运算放大器的工作原理,以及反馈回路方向的判定规则。介绍了瞬时极性法用于判断反馈性质:选择回路起点施加电压变化,跟踪回路各点电压变化,最终确定反馈类型。同时提到反馈还可按电压/电流、串联/并联、直流/交流等方式分类。文章通过实例演示了负反馈的判断过程。
2025-11-15 16:09:42
42
原创 本专栏所有论文笔记规范
论文题目的中文和主要作者(一般写第一作者即可),以标题一格式。算法描述:尽量翻译为中文的算法描述,可以加入自己的理解。公式:可以将论文中的公式截图,每个公式都要编号。以后我的每篇论文的笔记均遵从下面规范。相同主题的论文尽量放在一篇文章中。
2025-10-31 23:26:07
18
原创 poppler安装及配置(待更新)
本文简要介绍了pdf2image的Windows安装方法,包括从指定网址下载稳定版本,将bin目录添加到环境变量,并通过终端输入"pdftoppm -h"测试安装是否成功。最后提到由于发现pdf.js可能更适合在Qt中使用,因此暂停了该安装方案的继续研究。文章提供了安装过程的要点说明和中断原因。
2025-09-15 18:21:54
543
原创 二分类的分类任务
对于机器学习和深度学习来说随机变量可以有X,Y,Z,这是由于经常将样本的x和y分开研究所以随机变量也经常用X和Y,我这里再引入一个Z,Z的取值是x和y的组合,即(x,y)。在我的所有机器学习和深度学习相关的文章中将会如此使用,以后不再说明。
2025-09-14 15:40:08
193
原创 树莓派学习笔记
树莓派串口配置指南:3代及后续机型需在config.txt添加"dtoverlay=pi3-miniuart-bt"禁用蓝牙占用,并修改cmdline.txt文件内容。早期版本可直接连接。建议使用Xshell工具,具体操作可参考B站教程视频。不同型号树莓派的串口引脚定义统一,配置时需注意硬件版本差异。
2025-09-13 10:12:40
59
原创 sklearn集成学习
摘要:AdaBoostClassifier类核心参数包括estimator(基础学习器)、n_estimators(最大迭代次数)和learning_rate(学习率),其中学习率与迭代次数存在权衡关系。AdaBoostRegressor类比Classifier类多一个loss参数,用于指定权重更新时的损失函数类型(linear/square/exponential)。学习率影响模型稳定性,高学习率减少估计器数量但可能不稳定,低学习率需要更多估计器但更稳定。两类算法通过调整这些参数实现性能优化。
2025-09-13 10:12:16
35
原创 sklearn朴素贝叶斯模型
本文介绍了GaussianNB高斯朴素贝叶斯分类器的两个关键特性。参数priors用于指定已知的类别先验概率P(y),当传入该参数时可避免从数据中估算。方法部分说明了partial_fit()用于增量学习,predict_joint_log_proba()用于预测样本的对数联合概率。该分类器适用于需要快速实现且特征间独立性假设成立的场景。
2025-09-13 10:12:00
43
原创 sklearn距离
X和Y是样本矩阵,它们的形状分别为(n_samples_X, n_features)和(n_samples_Y, n_features),这个函数是计算X和Y之间的曼哈顿距离,返回值也是个矩阵,形状为(n_samples_X, n_samples_Y),它的第i行第j列元素表示X中的第i个样本到Y中的第j个样本之间的距离。以metrics.pairwise.manhattan_distances为例讲解如何使用。
2025-09-13 10:11:38
30
原创 贝叶斯模型
摘要:朴素贝叶斯模型基于贝叶斯定理和特征独立性假设,通过条件概率实现分类,核心涉及条件概率公式和概率密度函数。其半朴素改进版本(ODE、SPODE、AODE、TAN)放宽独立性假设,在医学诊断、垃圾邮件过滤等领域展现优势。这些模型通过处理特征间依赖关系,在故障诊断、客户细分等场景中提高预测准确性,其中TAN还能构建特征依赖网络用于气象预测和基因分析。(149字)
2025-09-13 10:11:17
59
原创 线性模型介绍
思想:将目标值表达成特征值以及1的线性组合,线性回归模型的训练过程可以认为就是在寻找这个线性组合的过程。核心内容(损失函数):最小二乘法。优点:1、可解释性强,因为能够通过这个线性组合直观看出每个特征对目标值的影响程度。2、能够具有处理线性关系的数据。缺点:1、对非线性关系的数据拟合能力差。2、多重线性问题无法解决,因为多重线性问题会导致最小二乘法求解中的那个矩阵近似奇异导致模型不稳定,即特征值的微小变动都会导致w的巨大变化,如果矩阵奇异的化就根本无法求解了。
2025-09-13 10:10:30
43
原创 sklearn线性模型
拟合线性模型,其中X表示二维矩阵,形状为(n_samples, n_features),y表示二维矩阵,形状为(n_samples, n_targets),sample_weight是一维数组,表示每个样本的权重,也就是每个样本的可信度,值越大的表示这个样本数据越可信即越真实,值可以是小数可以是整数。返回使用的迭代器名称。
2025-09-13 10:09:54
34
原创 三极管相关电路
三极管相关电路总共可以分成12种电路,分别为:开关电路、恒流源电路、恒压源电路、镜像电流源电路、推挽驱动电路、自锁电路、震荡电路、数字逻辑门、音频放大电路、运放内部集成、比较器内部集成、各种控制以及保护电路。三极管特性:1、三极管当开关计算时会让它工作在饱和区相应的Uce电压为0.1-0.3v,而计算时通常取0.3v即可。2、硅三极管be导通时有0.7v压降。3、从导通到放大区再到饱和区Uce电压会不断减小。
2025-09-13 10:08:55
93
原创 电容分类及用途
陶瓷电容包括:瓷片电容、独石电容。介电材料:陶瓷。容量:独石电容远大于瓷片电容。独石电容容量一般在0.5pf-100uf额定电压:独石电容远小于瓷片电容。独石电容额定电压一般小于100v,应用:独石电容一般应用在功率较小的场景下。
2025-09-13 10:08:02
66
原创 networkx库和graph-tool库
本文参考文献:1、图论的算法与程序设计(已保存到我的gitee)2、networkx官方文档。3、graph-tool官方文档。注意1:学习图论以networkx为主以graph-tool为辅来学习,这样是比较合理的,networkx接口多所以上手快学习简单但是不如graph-tool速度快,graph-tool底层用c++实现速度很快,但是接口少,并且这两个库可以互补有些功能只在networkx中有有些功能只在graph-tool中有。
2025-09-13 10:07:15
1092
原创 用图论来解决问题
参考文献:1、图论的算法与程序设计(已保存到我的gitee)注意:1、本文章只写出每个图论问题对应的经典的实际问题的名称,但是详细内容需要查看《图论的算法与程序设计》,比如图的最短路径问题对应的实际问题时渡河问题,如果想知道怎么回事需要在书中查询,为了好查询对应的内容我已经用彩笔做了标记。
2025-09-13 10:06:33
436
原创 sklearn数据预处理
归一化处理后的范围,默认将数据处理成0到1的范围。介绍:用于将数据集的每个特征的特征值进行归一化处理,即比如每个数据集中有两个特征,它会分别对每个特征进行归一化处理。MinMaxScaler类。
2025-09-10 15:43:20
35
原创 sklearn流行学习
特别注意sklearn中的Isomap算法使用的不是MDS算法而是KPCA算法,这与西瓜书的Isomap算法描述不对应,不过这并不是什么大问题,因为Isomap其实最重要的是得到测地线距离,而这个类的dist_matrix_ 属性就可以获得距离为测地线距离的距离矩阵。参数每个样本点的近邻的数量,如果这个参数非空那么radius参数必须为空。每个样本点的近邻点的最大距离,比如参数值为1表示距离样本点小于1的点为它的近邻点。变换后的数据维度。
2025-09-10 15:43:04
90
原创 linux驱动开发
本文介绍了Linux开发环境搭建与内核开发的要点。首先需要配置交叉编译工具链和安装开发工具包,主要包括u-boot编译、内核镜像生成和设备树文件处理。内核目录结构中,arch、init等目录与启动相关,drivers、fs等分别对应驱动和文件系统。内核模块开发分为静态和动态两种方法:静态方法需修改内核源码目录的Makefile/Kconfig;动态方法则更推荐,可在独立目录编写模块并通过指定内核路径进行编译。文章还提供了模块操作命令(insmod/rmmod等)和信息宏的使用方法,以及多模块编译的Makef
2025-09-10 15:42:38
117
原创 集成学习(ensemble learning)
集成学习主要有两类,一类是boosting族算法,即序列化方法,一类是bagging族算法,即并行化方法。
2025-09-10 15:41:54
39
原创 信号与系统
本文总结了西安电子科技大学《信号与系统》MOOC课程的核心内容。重点包括:1)信号与系统在线性时不变系统框架下的研究,强调网络函数作为系统本质特征;2)傅里叶分析的两种形式(级数和变换)及其应用,包括狄利克雷条件、吉布斯现象等关键概念;3)拉普拉斯变换作为傅里叶变换的扩展,特别是其单边变换在因果信号分析中的作用;4)系统稳定性判断、信号流图与梅森公式等系统分析方法。课程展现了从时域到频域的系统性理论框架,为信号处理提供了重要数学工具和分析方法。
2025-09-10 15:40:10
693
原创 泛函分析总结
1、连接两个赋范线性空间的线性算子的有界和连续是等价的。2、有限维赋范线性空间上所有范数是等价的。也就是说诱导的拓扑结构是等价的3、riesz引理:赋范线性空间是有限维的,当且仅当它的单位球是紧集。这是判断赋范线性空间空间是有限还是无限维的关键。为了简写和好记进行如下书写格式。在赋范线性空间中1、线性算子的有界和连续是等价的。2、有限维时,线性算子连续。也就是说无界线性算子仅存在于无限空间。3、有限维时,有界集等价于列紧集。4、有限维时,范数等价。5、有限维时,为有限维的巴纳赫空间。
2025-09-10 15:39:13
1108
原创 电路板问题维修
电子元件检测与维修方法总结 本文介绍了常见电子元件的检测方法和维修技巧。主要内容包括:1)万用表蜂鸣档读数简化方法;2)电阻、电容、电感、二极管、三极管、MOS管等元件的检测标准与好坏判断;3)电脑主板维修流程,重点说明ATX电源接口、PCIe接口和CPU供电的检测方法;4)IO芯片的功能识别。文中提供了详细的测量步骤和参数参考,特别强调在维修二手主板时需先进行对地阻值检测,避免直接上电损坏CPU。文章实用性较强,适合电子维修人员参考。
2025-09-10 15:38:08
743
原创 驱动外设总结2
TF卡主要分为四类:MicroSD(≤2GB)、SDHC(2-32GB)、SDXC(32GB-2TB)和SDUC(2-128TB)。速度等级通过不同标识表示:C2-C10表示最低写入速度2-10MB/s;U1/U3表示读取速度10/30MB/s;V6-V90专为视频录制设计,表示最低写入速度6-90MB/s。这些标准帮助用户根据需求选择合适的存储卡。
2025-09-10 15:37:21
151
原创 latex
标题:\title{}作者:\author{} ,如果有多个作者比如a作者b作者那么可以这样写\author{a \and b},如果还有附加信息可以这样\author{a \thanks{Email:xxx@qq.com} \and b}日期:\date{\today} ,这里\today表示自动生成今天的日期。自定义的格式中的标题和作者以及日期需要在正文区用\maketitile命令显示出来,这个命令在哪放这些内容就在哪里显示。导言区可以设置全局的缩进、行距、
2025-09-10 15:35:15
841
原创 常见的聚类算法
原型聚类也叫做基于原型的聚类,此类算法的聚类结构能通过一组原型来刻画,比如k-means中的质心就可以认为是原型,有了质心k-means的聚类结果就有了,所以可以认为k-means的目的就是在找一组质心。原型就是样本空间中有代表性的点,但是特别注意它不一定是样本点。
2025-09-10 13:34:37
520
原创 激活函数汇总
表达式:图像:取值范围:(0,1)优点:平滑。缺点:1、激活函数计算量大,反向传播求误差梯度时,求导涉及除法;2、反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。3、()输出不以零为中心并且输出恒正,导致权重更新容易出现锯齿形收敛路径(zig-zag收敛路径),这样降低了更新效率,它通常不适合隐藏层,多用于输出层。
2025-06-27 12:38:36
268
原创 tftp配置
本文介绍了在Linux系统中安装和配置TFTP服务的方法:首先使用apt-get安装tftp服务端和客户端,然后修改配置文件指定用户、目录和端口(默认/tftpboot和69端口),创建对应目录并设置权限为777。配置完成后重启服务,通过在/tftpboot创建测试文件并尝试从家目录获取文件来验证服务是否正常运行。若测试文件能成功传输且内容一致,则说明TFTP服务配置完成。整个过程包括安装、配置、权限设置和服务测试四个主要步骤。
2025-06-03 15:38:07
219
原创 nfs网络文件系统
本文介绍了在Linux系统中安装和配置NFS服务的步骤。首先通过apt-get安装nfs-kernel-server,然后编辑/etc/exports文件配置共享目录权限,创建并设置挂载点目录。每次修改配置文件后需重启NFS服务。测试时可通过本地挂载验证,使用mount命令将NFS共享目录挂载到本地/mnt目录,检查测试文件是否存在以确认配置成功,最后用umount卸载目录。整个过程包括安装、配置、重启服务和测试验证等关键步骤。
2025-06-01 16:34:52
275
原创 gcc相关内容
GCC是GNU项目开发的编译器集合,最初专为C语言设计,现支持多种语言并具备交叉编译能力。作为Linux系统的核心编译工具,它曾是该系统唯一的编译器选择。Mingw则是Windows平台的GNU工具精简版本,常用于Windows下的C语言编译。两者均体现GNU创建完全开源操作系统的理念。
2025-05-31 23:09:30
335
原创 makefile学习笔记
本文简要介绍了Makefile的基本概念和使用方法。Makefile主要用于定义C/C++工程的编译规则,指定文件编译顺序和依赖关系。核心内容包括:1)基本规则格式(目标:依赖+带tab缩进的命令);2)常用变量赋值方式;3)make的自动推导功能;4)特殊标记如.PHONY的用法;5)make和make clean等常用命令。文章同时指出在实际项目中更常用CMake来自动生成Makefile,并建议在build目录中执行cmake命令。该摘要概括了Makefile的核心知识点和使用场景,适合快速了解Mak
2025-05-28 17:05:45
533
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅