EViews8|庞皓计量经济学教材习题4.4

文章通过Eviews软件对家电零售总额与GDP、人均可支配收入、家电广告投放总额和居民消费价格指数的关系进行回归分析,发现模型存在严重的多重共线性问题,导致参数估计不合理。为解决这一问题,使用逐步回归方法筛选变量,最终确定修正后的回归模型。
摘要由CSDN通过智能技术生成

下面在此分享一下一次课程作业的答题思路及个人答题结果。如有错误欢迎指正。

一、背景

    下表是中国家电零售总额及GDP、人均可支配收入、家电广告投放总额、居民消费价格指数等数据。

年份

家电零售总额Y/亿元

GDP X2/亿元

人均可支配收入X3/元

家电广告投放总额X4/亿元

居民消费价格指数X5(1996年=100)

1997

506.0

78802.9

5160.3

64.71

102.8

1998

651.7

83817.6

5425.1

79.02

102.0

1999

724.3

89366.5

5854.0

67.14

100.5

2000

831.6

99066.1

6280.0

73.51

101.0

2001

784.7

109276.2

6859.6

65.88

101.7

2002

953.0

120480.4

7702.8

78.74

100.8

2003

1127.2

136576.3

8472.2

88.00

102.1

2004

1415.7

161415.4

9421.6

76.51

106.0

2005

1636.0

185998.9

10493.0

77.40

107.9

2006

1921.7

219028.5

11759.5

88.61

109.6

2007

2370.7

270844.0

13785.8

94.40

114.8

2008

2706.6

321500.5

15780.8

87.92

121.6

2009

3154.4

348498.5

17174.7

98.67

120.7

2010

4056.5

411265.2

19109.4

119.43

124.7

2011

5374.9

484753.2

21809.8

140.34

131.5

2012

5935.8

539116.5

24564.7

205.09

134.9

2013

6944.5

590422.4

26955.1

229.73

138.4

2014

7603.3

644791.1

29381.0

246.83

141.2

2015

8269.5

682635.1

31790.3

277.19

143.1

二、问题研究

(1)如果考虑建立模型:

请利用表中数据估计此模型的参数。

利用Eviews求解得到OLS回归结果为:

由上图,可得模型估计的参数为:

变量

常数

GDP X2/亿元

人均可支配收入X3/元

家电广告投放总额X4/亿元

居民消费价格指数X5

参数估计值

3086.576

0.020875

-0.215372

10.95980

-37.65685

(2)根据经济学知识和实践经验,你认为参数估计结果合理吗?

  • 经济意义检验:

所估计参数.说明:

①在假定其他解释变量不变的情况下,GDP每增加1亿元,平均来说家电零售总额Y将增加  亿元。这与预期的经济意义相符。

②在假定其他解释变量不变的情况下,人均可支配收入每增加1元,平均来说家电零售总额Y将减少亿元。这与预期的经济意义不相符。

③在假定其他解释变量不变的情况下,家电广告投放总额每增加1亿元,平均来说家电零售总额Y将增加亿元。这与预期的经济意义相符。

④在假定其他解释变量不变的情况下,居民消费价格指数每增加1点,平均来说家电零售总额Y将减少37.65685亿元。这与预期的经济意义不相符。

   

该模型可决系数 ,修正可决系数,说明所建模型整体上对样本数据拟合较好,即解释变量“GDP”、“人均可支配收入”、“家电广告投放总额”、“居民消费价格指数”对被解释变量“家电零售总额”的99.7690%的差异作出了解释。但是当时,的p值大于,即X3、X5系数的用p值检验不显著,且X3、X5系数的符合与预期相反,这表明很可能存在严重的多重共线性。

综上,我认为:参数估计的结果不合理。

(3)分别采用简单相关系数检验法和方差扩大因子检验法验证模型是否存在多重共线性。

  • 简单相关系数检验法:

利用EViews求解,得到各解释变量相互之间的相关系数为:

由上表可知,各解释变量相互之间的相关系数较高,证实确实存在严重的多重共线性。

  • 方差扩大因子检验法:

①做X2对X3、X4、X5的辅助回归:

由图知, 

方差扩大因子为:

根据经验,说明X2和其他解释变量之间有严重的多重共线性。

②做X3对X2、X4、X5的辅助回归:

由图知, 

方差扩大因子为:

根据经验,说明X3和其他解释变量之间有严重的多重共线性。

③做X4对X2、X3、X5的辅助回归:

由图知, 

方差扩大因子为:

根据经验,说明X4和其他解释变量之间有严重的多重共线性。

④做X5对X2、X3、X4的辅助回归:

由图知, 

方差扩大因子为:

根据经验,说明X5和其他解释变量之间有严重的多重共线性。

综上,模型存在多重共线性。

(4)如果存在多重共线性,如何才能解决。

可以采用逐步回归的方法解决多重共线性问题。

①分别作Y对X2、X3、X4、X5的一元回归。

利用Eviews求解的结果如下:

一元回归结果整合如下:

变量

X2

X3

X4

X5

参数估计值

0.012404

0.294787

36.84504

165.0382

t统计量

35.76383

34.07769

15.48235

22.66610

0.986883

0.985572

0.933776

0.967970

0.986112

0.984724

0.929880

0.966086

加入X2的方程最大,应以X2为基础,顺次加入其他变量逐步回归。

②加入新变量回归结果(1)。

利用Eviews求解的结果如下:

二元回归结果整合如下:

 

X2

X3

X4

X5

X2、X3

0.010062

(1.304097)

0.055758

(0.303882)

0.985328

X2、X4

0.009025

(18.22946)

11.00519

(7.279340)

0.996578

X2、X5

0.018488

(5.610278)

-82.13358

(-1.855209)

0.987856

新加入X4的方程8,有改进,改进虽然没有X5好,但是其t检验显著,而X5的t检验不显著,X5的参数符号也不合理。因此保留X4,再加入其他新变量逐步回归。

③加入新变量回归结果(2)。

利用Eviews求解的结果如下:

三元回归结果整合如下:

X2

X3

X4

X5

X2、X4、X3

0.014858

(4.128798)

-0.144089

(-1.634941)

11.72027

(7.795210)

0.996902

X2、X4、X5

0.009388

(4.032586)

10.87603

(6.190138)

-4.365262

(-0.159823)

0.996356

在X2、X4基础上加入X3后的方程有改进,但是X3参数的t检验不显著,且其参数符号不合理;加入X5后不仅下降,X5参数的t检验不显著,甚至X5参数的符号也变得不合理。

从相关系数也可以看出,X3、X5和其他解释变量高度相关,这说明主要是X3、X5引起严重多重共线性,应予剔除。

  • 修正严重多重共线性影响后的回归结果为:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值