分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
由于分治的东西我也讲不太清,觉得只有分到最后的判断需要明确就行,所以接下来就只是列写过题目。
目录
Codeforces Round #702 (Div. 3) D. Permutation Transformation
Codeforces Round #656 (Div. 3) D. a-Good String
Codeforces Round #722 (Div. 1) A. Parsa's Humongous Tree
Codeforces Round #689 (Div. 2, based on Zed Code Competition) D. Divide and Summarize
Codeforces Round #313 (Div. 1) B. Equivalent Strings
题目
Codeforces Round #702 (Div. 3) D. Permutation Transformation
这道题算是基本题了,看tag是有dfs的标签,直接搜索在进行分段就行。
#include<iostream>
#include<cmath>
#include<string>
#include<iomanip>
#include<malloc.h>
using namespace std;
typedef long long ll;
struct node {
int* left, * right;
int depth;
};
int a[105],b[105];
int mmax(int* a, int le, int ri)
{
int k, maxx = -1e10;
for (int i = le;i <= ri;i++)
{
if (a[i] > maxx)
{
maxx = a[i];
k = i;
}
}
return k;
}
void merge(int* a, int le, int ri, int dep)
{
if (le == ri)
{
b[le] = dep;
return;
}
int maxx = mmax(a, le, ri);
b[maxx] = dep;
dep++;
if (le <= maxx - 1)
merge(a, le, maxx - 1, dep);
if (maxx + 1 <= ri)
merge(a, maxx + 1, ri, dep);
}
int main()
{
int n,t;
cin >> t;
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
while (t--)
{
cin >> n;
for (int i = 0;i < n;i++)
{
cin >> a[i];
}
merge(a, 0, n - 1, 0);
for (int i = 0;i < n;i++)
cout << b[i] << " ";
cout << endl;
}
}
Codeforces Round #656 (Div. 3) D. a-Good String
#include<iostream>
#include<cmath>
#include<string>
#include<iomanip>
#include<malloc.h>
using namespace std;
typedef long long ll;
char s[131077];
int merge(int le,int ri,char x)
{
if (le == ri-1)
{
if (s[le] == x)
return 0;
else return 1;
}
int mid = (le + ri) / 2;
int lnum = 0, rnum = 0;
for (int i = le;i < mid;i++)
{
if (s[i] != x)
lnum++;
}
for (int i = mid;i < ri;i++)
{
if (s[i] != x)
rnum++;
}
int k = min(merge(le, mid, x + 1) + rnum, merge(mid, ri, x + 1) + lnum);
return k;
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
int n;
scanf("%d", &n);
scanf("%s", s);
printf("%d\n", merge(0, n, 'a'));
}
}
Codeforces Round #722 (Div. 1) A. Parsa's Humongous Tree
#include<iostream>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long ll;
ll a[100005][2];
ll dp[100005][2];
vector<int >g[100005];
void ddpp(int now,int la)
{
for (int i = 0;i < g[now].size();i++)
{
if (g[now][i] == la)
continue;
ddpp(g[now][i], now);
dp[now][0] += max(dp[g[now][i]][0] + abs(a[now][0] - a[g[now][i]][0]), dp[g[now][i]][1] + abs(a[now][0] - a[g[now][i]][1]));
dp[now][1] += max(dp[g[now][i]][0] + abs(a[now][1] - a[g[now][i]][0]), dp[g[now][i]][1] + abs(a[now][1] - a[g[now][i]][1]));
}
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
int n;
scanf("%d", &n);
memset(dp, 0, sizeof(dp));
for (int i = 1;i <= n;i++)
{
g[i].clear();
scanf("%lld%lld", &a[i][0], &a[i][1]);
}
for (int i = 0;i < n - 1;i++)
{
int x, y;
scanf("%d%d", &x, &y);
g[x].push_back(y);
g[y].push_back(x);
}
ddpp(1, -1);
printf("%lld\n", max(dp[1][0], dp[1][1]));
}
return 0;
}
Codeforces Round #689 (Div. 2, based on Zed Code Competition) D. Divide and Summarize
#include<iostream>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
map<ll, int > g;
ll a[100005];
ll dfs(int le,int ri)
{
if (le == ri||le>ri)
{
g[a[le]] = 1;
return a[le];
}
ll mid = (a[le] + a[ri]) / 2;
int now=le;
for (int i = le;i <= ri;i++)
{
if (a[i] > mid)
{
now = i;
break;
}
}
if (now == le)
{
ll k = a[le] * (ri - le + 1);
g[k] = 1;
return k;
}
ll sum = dfs(now, ri) + dfs(le, now - 1);
g[sum] = 1;
return sum;
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
int n, q;
g.clear();
memset(a, 0, sizeof(a));
scanf("%d%d", &n, &q);
for (int i = 0;i < n;i++)
{
scanf("%lld", &a[i]);
}
sort(a, a + n);
dfs(0, n - 1);
for (int i = 0;i < q;i++)
{
ll k;
scanf("%lld", &k);
if (g[k])
printf("Yes\n");
else printf("No\n");
}
}
return 0;
}
Codeforces Round #313 (Div. 1) B. Equivalent Strings
#include<iostream>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
string a, b;
int merge(int al,int ar,int bl,int br)
{
int len = ar - al + 1;
if (a.substr(al, len) == b.substr(bl, len))
return 1;
if (len % 2 == 1)
return 0;
int amid = (al + ar) / 2;
int bmid = (bl + br) / 2;
if (merge(al, amid, bmid + 1, br) && merge(amid + 1, ar, bl, bmid))
return 1;
if (merge(al, amid, bl, bmid) && merge(amid + 1, ar, bmid + 1, br))
return 1;
return 0;
}
int main()
{
cin >> a >> b;
if (merge(0, a.length() - 1, 0, b.length() - 1))
printf("YES");
else printf("NO");
return 0;
}
总结
我觉得,分治最重要的就是找到递归的方法,只要找出规律,就能实现计算。而判断最小递归项,即不再进行递归的项的条件是非常重要的,去寻找这个相应条件时,思考过程也有助于整个题目的理解。这些题目没有1800以上的难度,再高点感觉会比较繁琐,之后再学习这个专题的时候,可能会冲击较高难度的题目吧。